Question #116534
Solve the differential equation:
dy/dx+(x÷1-x²)y=x√y,y(0)=1
1
Expert's answer
2020-05-18T19:40:07-0400

Given differential equation is dydx+x1x2y=xy\frac{dy}{dx}+\frac{x}{1-x²}y=x\sqrt{y}

    1ydydx+x1x2y=x\implies \frac{1}{\sqrt{y}} \frac{dy}{dx} + \frac{x}{1-x^2} \sqrt{y} = x .


Now, let y=t    12ydydx=dtdx\sqrt{y}=t \implies \frac{1}{2\sqrt{y}} {dy}{dx} = \frac{dt}{dx}

So, differential equation becomes: 2dtdx+x1x2t=x    dtdx+12x1x2t=x22\frac{dt}{dx} + \frac{x}{1-x^2} t = x \implies \frac{dt}{dx} +\frac{1}{2} \frac{x}{1-x^2} t = \frac{x}{2},

this is linear differential equation of form dtdx+P(x)t=Q(x)\frac{dt}{dx} + P(x) t = Q(x).


So, Integrating factor(I.F.) = e12x1x2dx=e14log(1x2)=(1x2)14e^{{\int} \frac{1}{2} \frac{x}{1-x^2} dx} = e^{\frac{-1}{4} log(1-x^2)} = (1-x^2)^{\frac{-1}{4}}

Hence solution is t(1x2)14=x2(1x2)14dx+ct (1-x^2)^{\frac{-1}{4}} = \int {\frac{x}{2} (1-x^2)^{\frac{-1}{4}}} dx + c

    t(1x2)14=(14)(43)(1x2)34+c\implies t (1-x^2)^{\frac{-1}{4}} = (\frac{1}{-4}) (\frac{4}{3}) (1-x^2)^{\frac{3}{4}} + c

    y(1x2)14=(13)(1x2)34+c\implies \sqrt{y} (1-x^2)^{\frac{-1}{4}} = (\frac{-1}{3}) (1-x^2)^{\frac{3}{4}} + c


Now given y(0)=1

    1=13+c    c=43\implies 1 = \frac{-1}{3} + c \implies c = \frac{4}{3}.


Hence the final solution is y=(13)(1x2)+43(1x2)14\sqrt{y} = (\frac{-1}{3}) (1-x^2) + \frac{4}{3} (1-x^2)^{\frac{1}{4}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS