Given differential equation is dxdy+1−x2xy=xy
⟹y1dxdy+1−x2xy=x .
Now, let y=t⟹2y1dydx=dxdt
So, differential equation becomes: 2dxdt+1−x2xt=x⟹dxdt+211−x2xt=2x,
this is linear differential equation of form dxdt+P(x)t=Q(x).
So, Integrating factor(I.F.) = e∫211−x2xdx=e4−1log(1−x2)=(1−x2)4−1
Hence solution is t(1−x2)4−1=∫2x(1−x2)4−1dx+c
⟹t(1−x2)4−1=(−41)(34)(1−x2)43+c
⟹y(1−x2)4−1=(3−1)(1−x2)43+c
Now given y(0)=1
⟹1=3−1+c⟹c=34.
Hence the final solution is y=(3−1)(1−x2)+34(1−x2)41.
Comments