Question #117600
Solve the following initial value problem d^2 y/dx^2 +dy/dx -2y =-6 sin 2x -18 cos 2x , y(0) = 2, y'(0) = 2
1
Expert's answer
2020-05-22T18:19:05-0400

The given equation can be written as

(D2+D-2)y = -6 sin2x -18cos2x


The auxiliary equation of the above is

D2 +D-2=0

D = 1,-2

The complimentary solution is given by:

y= c1 ex + c2 e-2x


Particular solution is given by:

1D2+D2(6sin2x18cos2x)=\frac{1}{D^2+D-2}( -6sin2x -18cos2x )=

=1D2+D2(6sin2x)1D2+D2(18cos2x)=\frac{1}{D^2+D-2} (-6sin2x)-\frac{1}{D^2+D-2}(-18cos2x)


=6sin2xD618cos2xD6=\frac{-6sin2x}{D-6} - \frac{18cos2x}{D-6}


=(D+6)6sin2xD236(D+6)18cos2xD236= (D+6) \frac{-6sin2x}{D^2-36}-(D+6) \frac{18cos2x}{D^2-36}


=(D+6)6sin2x40(D+6)18cos2x40=(D+6) \frac{-6sin2x}{-40} -(D+6) \frac{18cos2x}{-40}


=310(cos2x+3sin2x)+910(sin2x+3cos2x)=\frac{3}{10}(cos2x+3sin2x) + \frac{9}{10} (-sin2x+3cos2x)

=3 cos2x


So, the solution is y= c1 ex+ c2e-2x + 3 cos2x


Now, initial conditions given are:

y(0)=2

-1=c1+c2

y' = c1ex -2c2e-2x -6 sin2x

y'(0)=2

2= c1-2c2

c1=0 , c2=-1


y=-e-2x +3cos2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS