1.7) Given ϕ(x)=aex+becx is solution of y′′+y′−2y=0,y(0)=2,y′(0)=1.
Hence, y=aex+becx⟹y′=aex+bcecx and y′′=aex+bc2ecx.
So, (aex+bc2ecx)+(aex+bcecx)−2(aex+becx)=0
⟹b(c2+c−2)=0 _____________(1)
Also, y(0)=2,y′(0)=1
⟹a+b=2 __________________(2)
and a+bc=1 ___________________(3)
From equation(1) if b=0 , then from equation(2) a=2 and from equation (3) a=1 which is not possible, so b=0.
Now, so from equation(1), c2+c−2=0⟹(c+2)(c−1)=0
⟹either c=1, or c=−2.
If c=1, then from equation (3) a+b=1 which contradict the equation (2), so c=1.
Only c=−2 is possible, so from equation (3) a−2b=1 _____________(4).
So, by equation (2) - equation(3), we get c=31 and hence a=35 .
So, a+b+c=2+(−2)=0.
1.8) Given x=at,y=−t2 is solution of y=x(dy/dx)+(dy/dx)2.
Now, dtdx=a,dtdy=−2t⟹dxdy=dx/dtdy/dt=−a2t.
By putting in given differential equation, we get
−t2=at(a−2t)+(a−2t)2⟹−a2t2=−2a2t2+4t2⟹a2=4⟹a=2
Comments