Question #115361
Determine the general solution of y' + [1-3x^2/x(1-x^2)]y = 1/1-x^2
1
Expert's answer
2020-05-12T17:19:37-0400

Given

y+13x2x(1x2)y=11x2y' + \frac{1-3x^2}{x(1-x^2)} y =\frac{1} {1-x^2}

This is a linear equation with

p(x)=13x2x(1x2),   q(x)=11x2p(x)=\frac{1-3x^2}{x(1-x^2)},\ \ \ q(x) =\frac{1} {1-x^2}

Since

13x2x(1x2)=Ax+B1x+C1+x=A(1x2)+Bx(1+x)+Cx(1x)x(1x2)13x2=A(1x2)+Bx(1+x)+Cx(1x)\begin{aligned} \frac{1-3x^2}{x(1-x^2)}&=\frac{A}{x }+\frac{B}{1-x}+\frac{C}{1+x}\\ &= \frac{A (1-x^2)+Bx(1+x)+Cx(1-x)}{x(1-x^2)}\\ 1-3x^2&=A (1-x^2)+Bx(1+x)+Cx(1-x) \end{aligned}

Then

At  x=0    A=1At  x=1    C=1At  x=1    B=1\begin{aligned} \text{At } \ x&=0\ \ \ \to \ A=1\\ \text{At } \ x&=-1\ \ \ \to \ C=1\\ \text{At } \ x&= 1\ \ \ \to \ B=-1 \end{aligned}

Hence

p(x)dx=13x2x(1x2)dx=dxxdx1x+dx1+x=lnx+ln(1x)+ln(1+x)=lnx(1x2)\begin{aligned} \int p(x)dx&=\int \frac{1-3x^2}{x(1-x^2)}dx\\ &=\int \frac{dx}{x }-\int \frac{dx}{1-x}+\int \frac{dx}{1+x}\\ &=\ln x+\ln (1-x)+\ln (1+x)\\ &=\ln x(1-x^2) \end{aligned}

Since the integral factor given by

μ=ep(x)dx=elnx(1x2)=x(1x2)\begin{aligned} \mu&=e^{\int p(x)dx}\\ &=e^{\ln x(1-x^2)}\\ &= x(1-x^2) \end{aligned}

Then the solution is

μy=μq(x)dxx(1x2)y=x(1x2)11x2dx=xdx=12x2+C\begin{aligned} \mu y&=\int \mu q(x)dx\\ x(1-x^2) y &= \int x(1-x^2)\frac{1}{1-x^2}dx\\ &=\int xdx\\ &= \frac{1}{2}x^2+C \end{aligned}

Hence

y=x22x(1x2)+C2x(1x2)y= \frac{ x^2}{2x(1-x^2)}+\frac{ C }{2x(1-x^2)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS