Given
y′+x(1−x2)1−3x2y=1−x21
This is a linear equation with
p(x)=x(1−x2)1−3x2, q(x)=1−x21
Since
x(1−x2)1−3x21−3x2=xA+1−xB+1+xC=x(1−x2)A(1−x2)+Bx(1+x)+Cx(1−x)=A(1−x2)+Bx(1+x)+Cx(1−x)
Then
At xAt xAt x=0 → A=1=−1 → C=1=1 → B=−1
Hence
∫p(x)dx=∫x(1−x2)1−3x2dx=∫xdx−∫1−xdx+∫1+xdx=lnx+ln(1−x)+ln(1+x)=lnx(1−x2)
Since the integral factor given by
μ=e∫p(x)dx=elnx(1−x2)=x(1−x2)
Then the solution is
μyx(1−x2)y=∫μq(x)dx=∫x(1−x2)1−x21dx=∫xdx=21x2+C
Hence
y=2x(1−x2)x2+2x(1−x2)C
Comments