Given (p2+q2)z+px+qy=0 _______________________(1)
Let f=(p2+q2)z+px+qy
Using Charpit's Method:
−∂p∂fdx=−∂q∂fdy=−p∂p∂f−q∂q∂fdz=∂x∂f+p∂z∂fdp=∂y∂f+q∂z∂fdq
From last two factor, we get
p+p(p2+q2)dp=q+q(p2+q2)dq ⟹pdp=qdq
So by integrating, we get log(p)=log(q)−log(a)⟹q=ap.
By putting value of q in (1), we get
p2(1+a2)z+px+apy=0⟹p(1+a2)z+(x+ay)=0⟹p=−(1+a2)zx+ay and q=−(1+a2)za(x+ay).
Finally, we have to solve: dz=pdx+qdy
dz=−(1+a2)zx+aydx−(1+a2)za(x+ay)dy
⟹(1+a2)zdz=−xdx−a(ydx+xdy)−a2ydy
So by integrating, we get
(1+a2)2z2=−2x2−axy−a22y2
⟹(1+a2)z2=−x2−2axy−a2y2 is the solution of given differential equation.
Comments
Leave a comment