z=(x−y)ϕ(x2+y2)z=(x-y)\phi(x^2+y^2)z=(x−y)ϕ(x2+y2)
Let's denote ∂z/∂x=p, ∂z/∂y=q\partial z/\partial x=p, \,\, \partial z/\partial y=q∂z/∂x=p,∂z/∂y=q.
Differentiate both sides with respect to xxx then to yyy:
p=(x−y)ϕ′(x2+y2)2x+ϕ(x2+y2)p=(x-y) \phi'(x^2+y^2)2x+\phi(x^2+y^2)p=(x−y)ϕ′(x2+y2)2x+ϕ(x2+y2),
q=(x−y)ϕ′(x2+y2)2y−ϕ(x2+y2)q=(x-y) \phi'(x^2+y^2)2y-\phi(x^2+y^2)q=(x−y)ϕ′(x2+y2)2y−ϕ(x2+y2).
Hence, we have
p−ϕ(x2+y2)q+ϕ(x2+y2)=xy⇝py−qx=ϕ(x2+y2)(x+y)\frac{p-\phi(x^2+y^2)}{q+\phi(x^2+y^2)}=\frac{x}{y} \rightsquigarrow py-qx=\phi(x^2+y^2)(x+y)q+ϕ(x2+y2)p−ϕ(x2+y2)=yx⇝py−qx=ϕ(x2+y2)(x+y)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments