"z=(x-y)\\phi(x^2+y^2)"
Let's denote "\\partial z\/\\partial x=p, \\,\\, \\partial z\/\\partial y=q".
Differentiate both sides with respect to "x" then to "y":
"p=(x-y) \\phi'(x^2+y^2)2x+\\phi(x^2+y^2)",
"q=(x-y) \\phi'(x^2+y^2)2y-\\phi(x^2+y^2)".
Hence, we have
"\\frac{p-\\phi(x^2+y^2)}{q+\\phi(x^2+y^2)}=\\frac{x}{y} \\rightsquigarrow py-qx=\\phi(x^2+y^2)(x+y)"
Comments
Leave a comment