Conclusion,
This means that we must find the form of the integrating factor for the equation to be exact.
Since,
The function "\\varphi(y)" is only for the variable "y" , then the integrating factor has the form
Then,
"\\left(\\frac{1}{y^3}\\right)\\times\\left|\\left(y^2-2x\\right)dy+ydx=0\\right.\\\\[0.3cm]\n\\underbrace{\\left(\\frac{1}{y^2}\\right)}_{F'_x(x,y)}dx+\\underbrace{\\left(\\frac{1}{y}-\\frac{2x}{y^3}\\right)}_{F'_y(x,y)}dy=0\\\\[0.3cm]\n\\frac{\\partial F}{\\partial x}=\\frac{1}{y^2}\\longrightarrow F(x,y)=\\int\\frac{dx}{y^2}+g(y)\\\\[0.3cm]\nF(x,y)=\\frac{x}{y^2}+g(y)\\longrightarrow F'_y(x,y)=g'(y)-\\frac{2x}{y^3}\\\\[0.3cm]\ng'(y)-\\frac{2x}{y^3}=\\frac{1}{y}-\\frac{2x}{y^3}\\longrightarrow\\frac{dg}{dy}=\\frac{1}{y}\\longrightarrow\\\\[0.3cm]\n\\boxed{g(y)=\\ln|y|}"
Conclusion,
This equation defines a function "y(x)" which is a solution to the original equation
Comments
Leave a comment