(y2−2x)⋅dxdy+y=0∣∣×(dx)M(x,y)(y)dx+N(x,y)(y2−2x)dy=0∂y∂M(x,y)=1=−2=∂x∂N(x,y)
Conclusion,
ydx+(y2−2x)dy=0−not exact
This means that we must find the form of the integrating factor for the equation to be exact.
Since,
φ(y)=−M∂y∂M(x,y)−∂x∂N(x,y)=−y1−(−2)=−y3
The function φ(y) is only for the variable y , then the integrating factor has the form
μ(y)=e∫φ(y)dy=e−∫3/ydy=e−3lny=elny−3=y−3μ(y)=y31
Then,
(y31)×∣∣(y2−2x)dy+ydx=0Fx′(x,y)(y21)dx+Fy′(x,y)(y1−y32x)dy=0∂x∂F=y21⟶F(x,y)=∫y2dx+g(y)F(x,y)=y2x+g(y)⟶Fy′(x,y)=g′(y)−y32xg′(y)−y32x=y1−y32x⟶dydg=y1⟶g(y)=ln∣y∣Conclusion,
F(x,y)=y2x+ln∣y∣⟶(y21)dx+(y1−y32x)dy=0d(y2x+ln∣y∣)=0⟶y2x+ln∣y∣=Const
This equation defines a function y(x) which is a solution to the original equation
Comments