Question #112783
Solvable for y
y²p-2xp+y=0
1
Expert's answer
2020-04-29T17:08:41-0400
(y22x)dydx+y=0×(dx)(y)M(x,y)dx+(y22x)N(x,y)dy=0M(x,y)y=12=N(x,y)x\left.\left(y^2-2x\right)\cdot\frac{dy}{dx}+y=0\right|\times(dx)\\[0.3cm] \underbrace{\left(y\right)}_{M(x,y)}dx+\underbrace{\left(y^2-2x\right)}_{N(x,y)}dy=0\\[0.3cm] \frac{\partial M(x,y)}{\partial y}=1\neq-2=\frac{\partial N(x,y)}{\partial x}

Conclusion,



ydx+(y22x)dy=0not exact\boxed{ydx+\left(y^2-2x\right)dy=0-\text{not exact}}

This means that we must find the form of the integrating factor for the equation to be exact.

Since,



φ(y)=M(x,y)yN(x,y)xM=1(2)y=3y\varphi(y)=\frac{\displaystyle\frac{\partial M(x,y)}{\partial y}-\displaystyle\frac{\partial N(x,y)}{\partial x}}{-M}=\frac{1-(-2)}{-y}=-\frac{3}{y}


The function φ(y)\varphi(y) is only for the variable yy , then the integrating factor has the form



μ(y)=eφ(y)dy=e3/ydy=e3lny=elny3=y3μ(y)=1y3\mu(y)=e^{\int\varphi(y)dy}=e^{-\int3/ydy}=e^{-3\ln y}=e^{\ln y^{-3}}=y^{-3}\\[0.3cm] \boxed{\mu(y)=\frac{1}{y^3}}

Then,


(1y3)×(y22x)dy+ydx=0(1y2)Fx(x,y)dx+(1y2xy3)Fy(x,y)dy=0Fx=1y2F(x,y)=dxy2+g(y)F(x,y)=xy2+g(y)Fy(x,y)=g(y)2xy3g(y)2xy3=1y2xy3dgdy=1yg(y)=lny\left(\frac{1}{y^3}\right)\times\left|\left(y^2-2x\right)dy+ydx=0\right.\\[0.3cm] \underbrace{\left(\frac{1}{y^2}\right)}_{F'_x(x,y)}dx+\underbrace{\left(\frac{1}{y}-\frac{2x}{y^3}\right)}_{F'_y(x,y)}dy=0\\[0.3cm] \frac{\partial F}{\partial x}=\frac{1}{y^2}\longrightarrow F(x,y)=\int\frac{dx}{y^2}+g(y)\\[0.3cm] F(x,y)=\frac{x}{y^2}+g(y)\longrightarrow F'_y(x,y)=g'(y)-\frac{2x}{y^3}\\[0.3cm] g'(y)-\frac{2x}{y^3}=\frac{1}{y}-\frac{2x}{y^3}\longrightarrow\frac{dg}{dy}=\frac{1}{y}\longrightarrow\\[0.3cm] \boxed{g(y)=\ln|y|}

Conclusion,



F(x,y)=xy2+lny(1y2)dx+(1y2xy3)dy=0d(xy2+lny)=0xy2+lny=ConstF(x,y)=\frac{x}{y^2}+\ln|y|\longrightarrow\left(\frac{1}{y^2}\right)dx+\left(\frac{1}{y}-\frac{2x}{y^3}\right)dy=0\\[0.3cm] d\left(\frac{x}{y^2}+\ln|y|\right)=0\longrightarrow\boxed{\frac{x}{y^2}+\ln|y|=Const}

This equation defines a function y(x)y(x) which is a solution to the original equation


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS