We can rewrite the equation: (yzdx+zxdy+xydz)+(2xdx+2ydy+2zdz)=0(yzdx+zxdy+xydz)+(2xdx+2ydy+2zdz)=0(yzdx+zxdy+xydz)+(2xdx+2ydy+2zdz)=0
yzdx+zxdy+xydz=d(xyz)yzdx+zxdy+xydz=d(xyz)yzdx+zxdy+xydz=d(xyz)
2xdx+2ydy+2zdz=d(x2+y2+z2)2xdx+2ydy+2zdz=d(x^2+y^2+z^2)2xdx+2ydy+2zdz=d(x2+y2+z2)
Then d(x2+y2+z2+xyz)=0d(x^2+y^2+z^2+xyz)=0d(x2+y2+z2+xyz)=0
So x2+y2+z2+xyz=Cx^2+y^2+z^2+xyz=Cx2+y2+z2+xyz=C
Answer: x2+y2+z2+xyz=Cx^2+y^2+z^2+xyz=Cx2+y2+z2+xyz=C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments