The question on this form is incorrect if the first term is y''' , the auxiliary equation does not has solution . So i will solve the equation on the form
y ′ ′ + y ′ + y = 0 y''+y'+y=0 y ′′ + y ′ + y = 0
Set up and solve the auxiliary equation
m 2 + m + 1 = 0 \begin{aligned}m^2+m+1&=0\\
\end{aligned} m 2 + m + 1 = 0
Then
m = − 1 ± 1 − 4 2 = − 1 2 ± 3 2 i m=\frac{-1\pm \sqrt{1-4}}{2}=\frac{-1}{2}\pm \frac{\sqrt{3}}{2}i m = 2 − 1 ± 1 − 4 = 2 − 1 ± 2 3 i
Here α = − 1 / 2 , β = 3 / 2 \alpha =-1/2,\ \ \ \beta= \sqrt{3}/2 α = − 1/2 , β = 3 /2 , then the solution given by
y = e α x [ c 1 cos β x + c 2 sin β x ] = e ( − 1 / 2 ) x [ c 1 cos ( 3 / 2 ) x + c 2 sin ( 3 / 2 ) x ] \begin{aligned}
y&=e^{\alpha x} [c_1\cos \beta x+c_2\sin \beta x]\\
&= e^{(-1/2)x}[c_1\cos (\sqrt{3}/2) x+c_2\sin(\sqrt{3}/2) x]
\end{aligned} y = e αx [ c 1 cos β x + c 2 sin β x ] = e ( − 1/2 ) x [ c 1 cos ( 3 /2 ) x + c 2 sin ( 3 /2 ) x ]
---------------------------------------------------------------------------------------------------------------------------------------------
If the equation written true as
y ′ ′ + y ′ ′ + y = 0 → 2 y ′ ′ + y = 0 y''+y''+y=0\ \ \to 2y''+y=0 y ′′ + y ′′ + y = 0 → 2 y ′′ + y = 0
Set up and solve the auxiliary equation
2 m 2 + 1 = 0 2m^2+1=0 2 m 2 + 1 = 0
Then m = ± 1 2 m=\pm \frac{1}{\sqrt{2}} m = ± 2 1 , here α = 0 , β = 1 / 2 , \alpha =0,\ \ \beta = 1/\sqrt{2}, α = 0 , β = 1/ 2 , then the solution given by
y = e α x [ c 1 cos β x + c 2 sin β x ] = [ c 1 cos ( 1 / 2 ) x + c 2 sin ( 1 / 2 ) x ] \begin{aligned}
y&=e^{\alpha x} [c_1\cos \beta x+c_2\sin \beta x]\\
&= [c_1\cos (1/\sqrt{2}) x+c_2\sin(1/\sqrt{2}) x]
\end{aligned} y = e αx [ c 1 cos β x + c 2 sin β x ] = [ c 1 cos ( 1/ 2 ) x + c 2 sin ( 1/ 2 ) x ]
Comments
Leave a comment