Question #113582
Solve : x(y^2-z^2)p+y(z^2-x^2)q=z(x^2-y^2)
1
Expert's answer
2020-05-04T18:32:50-0400

The given equation is a Lagrange's linear equation. The auxiliary equations are


dxx(y2z2)=dyy(z2x2)=dzz(x2y2)\dfrac{dx}{x(y^{2}-z^{2})}=\dfrac{dy}{y(z^{2}-x^{2})}=\dfrac{dz}{z(x^{2}-y^{2})} .


Using the multipliers, x,y,zx,y,z each of the equation is equal to

xdx+ydy+zdzx2(y2z2)+y2(z2x2)+z2(x2y2)\dfrac{xdx+ydy+zdz}{x^{2}(y^{2}-z^{2})+y^{2}(z^{2}-x^{2})+z^{2}(x^{2}-y^{2})}


Therefore,

xdx+ydy+zdz=0Integrating, we getx22+y22+z22=cx2+y2+z2=c1            (1)xdx+ydy+zdz=0\\ \text{Integrating, we get}\\ \dfrac{x^{2}}{2}+\dfrac{y^{2}}{2}+\dfrac{z^{2}}{2}=c\\ x^{2}+y^{2}+z^{2}=c_{1}~~~~~~~~~~~~(1)

Now, using the multipliers, 1x,1y,1z\dfrac{1}{x}, \dfrac{1}{y}, \dfrac{1}{z} each of the equation is equal to

1xdx+1ydy+1zdzy2z2+z2x2+x2y2\dfrac{\frac{1}{x}dx+\frac{1}{y}dy+\frac{1}{z}dz}{y^{2}-z^{2}+z^{2}-x^{2}+x^{2}-y^{2}}


Therefore,

1xdx+1ydy+1zdz=0Integrating, we getlogx+logy+logz=logc2log(xyz)=logc2xyz=c2                        (2)\frac{1}{x}dx+\frac{1}{y}dy+\frac{1}{z}dz=0\\ \text{Integrating, we get}\\ \log x+\log y+\log z = \log c_{2}\\ \log (xyz)=\log c_{2}\\ xyz = c_{2}~~~~~~~~~~~~~~~~~~~~~~~~(2)


The general solution is given by,

ϕ(c1,c2)=0ϕ(x2+y2+z2,xyz)=0\phi(c_{1},c_{2})=0\\ \phi(x^{2}+y^{2}+z^{2},xyz)=0\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS