The given differential equation is
f(x,y,z,p,q)≡z(p2+q2)+px+qy=0 ...........(1)
Which is a Charpit's equation.
Therefore , The Charpit's Auxiliary equation are
fx+pfzdp=fy+qfzdq=−pfp−qfqdz=−fpdx=−fqdy
⟹p+p3+pq2dp=q+q3+qp2dq=−p(x+2zp)−q(y+2zq)dz=−x−2zpdx=−y−2zqdy
Taking first two fraction ,We get
p(1+p2+q2)dp=q(1+p2+q2)dq
⟹pdp=qdq ⟹log(p)=log(q)+log(a)
Where log(a) is a integration constant.
⟹qp=a ⟹p=aq ........(2)
Putting the value of (2) in equation (1) ,we get
z(a2q2+q2)+aqx+qy=0
⟹z(a2q+q)+ax+y=0⟹q=z(a2+1)−(ax+y)
and p=aq=−a×z(a2+1)ax+y
Now putting the value of p and q in dz=pdx+qdy
⟹(a2+1)zdz=−a2xdx−aydx−axdy−ydy
⟹(a2+1)zdz=−a2xdx−ad(xy)−ydy
On integrating ,we get
2(a2+1)×z2=−2a2x2−axy−2y2+2k
Where k is a integration constant.
(a2+1)×z2=−a2x2−axy−y2+k
Which is a complete integral.
Comments