Question #114851
Solve the following
z(p^2+q^2)+px+qy=0
1
Expert's answer
2020-05-18T10:16:25-0400

The given differential equation is

f(x,y,z,p,q)z(p2+q2)+px+qy=0f(x,y,z,p,q)\equiv z(p^2+q^2)+px+qy=0 ...........(1)

Which is a Charpit's equation.

Therefore , The Charpit's Auxiliary equation are

dpfx+pfz=dqfy+qfz=dzpfpqfq=dxfp=dyfq\frac{dp}{f_x+pf_z}=\frac{dq}{f_y+qf_z}=\frac{dz}{-pf_p-qf_q}=\frac{dx}{-f_p}=\frac{dy}{-f_q}


    dpp+p3+pq2=dqq+q3+qp2=dzp(x+2zp)q(y+2zq)=dxx2zp=dyy2zq\implies \frac{dp}{p+p^3+pq^2}=\frac{dq}{q+q^3+qp^2}=\frac{dz}{-p(x+2zp)-q(y+2zq)}=\frac{dx}{-x-2zp}=\frac{dy}{-y-2zq}

Taking first two fraction ,We get


dpp(1+p2+q2)=dqq(1+p2+q2)\frac{dp}{p(1+p^2+q^2)}=\frac{dq}{q(1+p^2+q^2)}



    dpp=dqq     log(p)=log(q)+log(a)\implies \frac{dp}{p}=\frac{dq}{q} \ \implies log(p)=log(q)+log(a)


Where log(a)log(a) is a integration constant.

    pq=a\implies \frac{p}{q}=a     p=aq\implies p=aq ........(2)

Putting the value of (2) in equation (1) ,we get

z(a2q2+q2)+aqx+qy=0z(a^2q^2+q^2)+aqx+qy=0

    z(a2q+q)+ax+y=0    q=(ax+y)z(a2+1)\implies z(a^2q+q)+ax+y=0 \implies q=\frac{-(ax+y)}{z(a^2+1)}

and p=aq=a×ax+yz(a2+1)p=aq=-a×\frac{ax+y}{z(a^2+1)}


Now putting the value of p and q in dz=pdx+qdydz=pdx+qdy

    (a2+1)zdz=a2xdxaydxaxdyydy\implies (a^2+1)zdz=-a^2xdx-aydx-axdy-ydy

    (a2+1)zdz=a2xdxad(xy)ydy\implies (a^2+1)zdz=-a^2xdx-ad(xy)-ydy

On integrating ,we get

(a2+1)2×z2=a22x2axyy22+k2\frac{(a^2+1)}{2}×z^2 =-\frac{a^2}{2}x^2-axy-\frac{y^2}{2}+\frac{k}{2}

Where k is a integration constant.

(a2+1)×z2=a2x2axyy2+k(a^2+1)×z^2=-a^2x^2-axy-y^2+k

Which is a complete integral.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS