The given differential equation is
dx2d2y+dxdy−2y=−6 sin2x−18 cos2x .
The auxiliary equation is m2+m−2=0
⟹m2+2m−m−2=0
⟹m(m+2)−1(m+2)=0
⟹(m+2)(m−1)=0
⟹m=1,−2
∴C.F.=A ex+B e−2x
Now , P.I.=D2+D−21(−6 sin2x−18 cos2x)
=D2+D−21(−6 sin2x)+D2+D−21(−18 cos2x)
=−4+D−2−6(sin2x)+−4+D−2−18(cos2x)
=D−6−6(sin2x)−D−618(cos2x)
=−6×D2−36D+6(sin2x)−18×D2−36D+6(cos2x)
=406×(2 cos2x+6 sin2x)+4018×(−2 sin2x+6 cos2x)
=(2018+20−18)sin2x+(206+2054)cos2x
=3 cos2x .
Therefore the complete solution is
y=A ex+B e−2x+3 cos2x ...................(1)
Differentiating (1) ,we get
y′=A ex−2B e−2x−6 sin2x .............(2)
But given that y(0)=2 and y′(0)=2 .
Therefore from equation (1) and (2) ,we get
A+B+3=2 ,⟹A+B=−1 .............(3)
A−2B=2 .........(4)
Subtracting (4) from (3) ,we get
3B=−3 ,⟹B=−1
Putting the value of B in equation (3) ,we get
A=0.
∴y=−e−2x+3 cos2x
Comments