Question #114191
solve the following initial value problem d^2y/dx^2 + dy/dx -2y=-6 sin2x-18cos2x where y(0)=2, y'(0)=2
1
Expert's answer
2020-05-06T19:09:09-0400

The given differential equation is

d2ydx2+dydx2y=6 sin2x18 cos2x\frac{d^2y}{dx^2}+\frac{dy}{dx}-2y=-6 \ sin2x-18 \ cos2x .


The auxiliary equation is m2+m2=0m^2+m-2=0

    m2+2mm2=0\implies m^2+2m-m-2=0

    m(m+2)1(m+2)=0\implies m(m+2)-1(m+2)=0

    (m+2)(m1)=0\implies (m+2)(m-1)=0

    m=1,2\implies m=1,-2

C.F.=A ex+B e2x\therefore C.F.=A\ e^x+B\ e^{-2x}


Now , P.I.=1D2+D2(6 sin2x18 cos2x)P.I.=\frac{1}{D^2+D-2}(-6\ sin2x-18\ cos2x)

=1D2+D2(6 sin2x)+1D2+D2(18 cos2x)=\frac{1}{D^2+D-2}(-6\ sin2x)+\frac{1}{D^2+D-2}(-18\ cos2x)


=64+D2(sin2x)+184+D2(cos2x)= \frac{-6}{-4+D-2}(sin2x)+\frac{-18}{-4+D-2}(cos2x)


=6D6(sin2x)18D6(cos2x)=\frac{-6}{D-6}(sin2x)-\frac{18}{D-6}(cos2x)


=6×D+6D236(sin2x)18×D+6D236(cos2x)=-6×\frac{D+6}{D^2-36}(sin2x)-18×\frac{D+6}{D^2-36}(cos2x)


=640×(2 cos2x+6 sin2x)+1840×(2 sin2x+6 cos2x)=\frac{6}{40}×(2\ cos2x+6\ sin2x)+\frac{18}{40}×(-2\ sin2x +6\ cos2x)


=(1820+1820)sin2x+(620+5420)cos2x=(\frac{18}{20}+\frac{-18}{20})sin2x+(\frac{6}{20}+\frac{54}{20})cos2x


=3 cos2x=3 \ cos2x .

Therefore the complete solution is

y=A ex+B e2x+3 cos2xy=A\ e^x+B \ e^{-2x}+3\ cos2x ...................(1)

Differentiating (1) ,we get

y=A ex2B e2x6 sin2xy'=A\ e^x-2B\ e^{-2x}-6\ sin2x .............(2)


But given that y(0)=2y(0)=2 and y(0)=2y'(0)=2 .

Therefore from equation (1) and (2) ,we get

A+B+3=2 ,    A+B=1A+B+3=2 \ ,\implies A+B=-1 .............(3)


A2B=2A-2B=2 .........(4)

Subtracting (4) from (3) ,we get

3B=3 ,    B=13B=-3 \ , \implies B=-1

Putting the value of B in equation (3) ,we get

A=0.

y=e2x+3 cos2x\therefore y=-e^{-2x}+3 \ cos2x




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS