Given differential equation is y′+x(1−x2)1−3x2y=1−x21(♣) , clearly, it's a first order first and degree
differential equation of the form y′+P(x)y=Q(x) ,Thus integrating factor (I.F) is given by,
I.F=e∫P(x)dx Hence, In this case I.F will be,
I.F=e∫x(1−x2)1−3x2dx(⋆) Now, let's calculate the integral first as follows
∫x(1−x2)1−3x2dx(⋆⋆) Suppose, f(x)=x(1−x2) ,clearly f′(x)=1−3x3 ,thus above integral has the form
∫f(x)f′(x)dx And we already know that ∫f(x)f′(x)dx=ln(f(x))+constant
Hence, (⋆⋆) will be ln(x(1−x2)) ,thus from (⋆)
I.F=eln(x(1−x2)=x(1−x2) (∵eln(f(x))=f(x)) ,Now on multiply I.F in equation (♣) we get,
x(1−x2)y′+(1−3x2)y=1−x2x(1−x2)⟹dxd(y⋅x(1−x2))=x⟹d(y⋅x(1−x2))=xdx⟹∫d(y⋅x(1−x2))=∫xdx⟹y⋅x(1−x2)=2x2+c⟹y=2(1−x2)x+x(1−x2)c where c is a constant. Hence, we are done.
Comments