For equation
(x−y)y2p+(y−x)x2q=(x2+y2)z
write an auxiliary equation
y2(x−y)dx=x2(y−x)dy=z(x2+y2)dzy2(x−y)dx=x2(y−x)dy→y2dx=x2(−1)dyy2dy+x2dx=0→d(3x3+3y3)=03x3+3y3=C1→x3+y3=3C1x3+y3=c1y2(x−y)dx=z(x2+y2)dz→(x−y)(x2+y2)dx=zy2dz∫((x−y)(x2−y2)+2y2)dx=∫zy2dz∫((x−y)(x−y)(x+y)+(x−y)2y2)dx=y2ln∣z∣∫(x+y+(x−y)2y2)dx=y2ln∣z∣2x2+xy+2y2⋅ln∣x−y∣+c2=y2ln∣z∣
Then,
y=0→03+x3=c1→x=c11/3y=0→2x2+c2=0→x=(−2x2)1/2c12=(−2c2)3x6=(−2⋅(y2ln∣z∣−21⋅(x2−3y2+2xy+4y2ln∣x−y∣)))3
ANSWER
x6=(−2⋅(y2ln∣z∣−21⋅(x2−3y2+2xy+4y2ln∣x−y∣)))3
Comments