Question #105970
Find the integral surface of the partial differential equation
(x y) y p (y x) x q (x y ) z 2 2 2 2 − + − = +
through the curve , 0 2 xz = a y =
1
Expert's answer
2020-03-23T14:52:51-0400

For equation



(xy)y2p+(yx)x2q=(x2+y2)z(x - y) y^2 p + (y - x) x^2 q = (x^2 + y^2) z



write an auxiliary equation



dxy2(xy)=dyx2(yx)=dzz(x2+y2)dxy2(xy)=dyx2(yx)dxy2=dyx2(1)y2dy+x2dx=0d(x33+y33)=0x33+y33=C1x3+y3=3C1x3+y3=c1dxy2(xy)=dzz(x2+y2)(x2+y2)dx(xy)=y2dzz((x2y2)+2y2(xy))dx=y2dzz((xy)(x+y)(xy)+2y2(xy))dx=y2lnz(x+y+2y2(xy))dx=y2lnzx22+xy+2y2lnxy+c2=y2lnz\displaystyle\frac{dx}{y^2(x-y)}=\displaystyle\frac{dy}{x^2(y-x)}=\displaystyle\frac{dz}{z(x^2+y^2)}\\[0.3cm] \displaystyle\frac{dx}{y^2(x-y)}=\displaystyle\frac{dy}{x^2(y-x)}\rightarrow\displaystyle\frac{dx}{y^2}=\displaystyle\frac{dy}{x^2(-1)}\\[0.3cm] y^2dy+x^2dx=0\rightarrow d\left(\frac{x^3}{3}+\frac{y^3}{3}\right)=0\\[0.3cm] \frac{x^3}{3}+\frac{y^3}{3}=C_1\rightarrow x^3+y^3=3C_1\\[0.3cm] \boxed{x^3+y^3=c_1}\\[0.3cm] \displaystyle\frac{dx}{y^2(x-y)}=\displaystyle\frac{dz}{z(x^2+y^2)}\rightarrow \displaystyle\frac{(x^2+y^2)dx}{(x-y)}=\displaystyle\frac{y^2dz}{z}\\[0.3cm] \int\left(\frac{(x^2-y^2)+2y^2}{(x-y)}\right)dx=\int\frac{y^2dz}{z}\\[0.3cm] \int\left(\frac{(x-y)(x+y)}{(x-y)}+\frac{2y^2}{(x-y)}\right)dx=y^2\ln|z|\\[0.3cm] \int\left(x+y+\frac{2y^2}{(x-y)}\right)dx=y^2\ln|z|\\[0.3cm] \boxed{\frac{x^2}{2}+xy+2y^2\cdot\ln|x-y|+c_2=y^2\ln|z|}

Then,


y=003+x3=c1x=c11/3y=0x22+c2=0x=(2x2)1/2c12=(2c2)3x6=(2(y2lnz12(x23y2+2xy+4y2lnxy)))3y=0\rightarrow 0^3+x^3=c_1\rightarrow\boxed{x=c_1^{1/3}}\\[0.3cm] y=0\rightarrow\frac{x^2}{2}+c_2=0\rightarrow\boxed{x=(-2x_2)^{1/2}}\\[0.3cm] c_1^2=(-2c_2)^3\\[0.3cm] \boxed{x^6=\left(-2\cdot\left(y^2\ln|z|-\frac{1}{2}\cdot(x^2-3y^2+2xy+4y^2\ln|x-y|)\right)\right)^3}

ANSWER



x6=(2(y2lnz12(x23y2+2xy+4y2lnxy)))3x^6=\left(-2\cdot\left(y^2\ln|z|-\frac{1}{2}\cdot(x^2-3y^2+2xy+4y^2\ln|x-y|)\right)\right)^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS