x2y′′+xy′−y=x2ex
We will replace
x=et,t=ln∣x∣,y′=dxdy=xt′yt′=etyt′=e−tyt′,y′′=dxdy′=dtdxdtdy′=etyt′′e−t−e−tyt′=e−2t(yt′′−yt′)
Input in equation
e2te−2t(yt′′−yt′)+ete−tyt′−y=e2teet
get the equation
y′′−y=e2teet
Consider homogenous equation
y′′−y=0λ2−1=0⟹λ1=1,λ2=−1y1=et,y2=e−ty0=c1et+c2e−t
Solution of equation find in form
y=c1(t)et+c2(t)e−t
c1,c2 find from the system
{c1′(t)et+c2′(t)e−t=0c1′(t)et−c2′(t)e−t=e2teet{c1′(t)=21eteetc2′(t)=−21e3teetc1(t)=∫21eteetdt=21eet+k1c2(t)=−∫21e3teetdt==−21(e2teet−2eteet+2eet)+k2y=(21eet+k1)et++(−21(e2teet−2eteet+2eet)+k2)e−t
Than
y=(21ex+k1)x+(−21(x2ex−2xex+2ex)+k2)x−1
Comments