Question #105854
Apply the method of variations of parameters to solve the following differential equations:
a) x^2y double prime+xyprime-y=x^2e^x
1
Expert's answer
2020-03-18T18:22:35-0400

x2y+xyy=x2exx^2y''+xy'-y=x^2e^x

We will replace

x=et,t=lnx,y=dydx=ytxt=ytet=etyt,y=dydx=dydtdxdt=ytetetytet=e2t(ytyt)x=e^t,\\ t=ln|x|,\\ y'=\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{y'_t}{e^t}=e^{-t}y'_t,\\ y''=\frac{dy'}{dx}=\frac{\frac{dy'}{dt}}{\frac{dx}{dt}}=\frac{y''_te^{-t}-e^{-t}y'_t}{e^t}=e^{-2t}(y''_t-y'_t)\\

Input in equation

e2te2t(ytyt)+etetyty=e2teete^{2t}e^{-2t}(y''_t-y'_t)+e^te^{-t}y'_t-y=e^{2t}e^{e^t}

get the equation

yy=e2teety''-y=e^{2t}e^{e^t}

Consider homogenous equation

yy=0λ21=0    λ1=1,λ2=1y1=et,y2=ety0=c1et+c2ety''-y=0\\ \lambda^2-1=0\implies\lambda_1=1, \lambda_2=-1\\ y_1=e^t, y_2=e^{-t}\\ y_0=c_1e^t+c_2e^{-t}

Solution of equation find in form

y=c1(t)et+c2(t)ety=c_1(t)e^t+c_2(t)e^{-t}

c1,c2c_1, c_2 find from the system

{c1(t)et+c2(t)et=0c1(t)etc2(t)et=e2teet{c1(t)=12eteetc2(t)=12e3teetc1(t)=12eteetdt=12eet+k1c2(t)=12e3teetdt==12(e2teet2eteet+2eet)+k2y=(12eet+k1)et++(12(e2teet2eteet+2eet)+k2)et\left\{ \begin{matrix} c_1'(t)e^t+c_2'(t)e^{-t}=0 \\ c_1'(t)e^t-c_2'(t)e^{-t}=e^{2t}e^{e^t} \end{matrix} \right.\\ \left\{ \begin{matrix} c_1'(t)=\frac{1}{2}e^{t}e^{e^t}\\ c_2'(t)=-\frac{1}{2}e^{3t}e^{e^t} \end{matrix} \right.\\ c_1(t)=\int \frac{1}{2}e^{t}e^{e^t}dt=\frac{1}{2}e^{e^t}+k_1\\ c_2(t)=-\int \frac{1}{2}e^{3t}e^{e^t}dt=\\ =-\frac{1}{2}(e^{2t}e^{e^t}-2e^{t}e^{e^t}+2e^{e^t})+k_2\\ y=(\frac{1}{2}e^{e^t}+k_1)e^t+\\ +(-\frac{1}{2}(e^{2t}e^{e^t}-2e^{t}e^{e^t}+2e^{e^t})+k_2)e^{-t}

Than

y=(12ex+k1)x+(12(x2ex2xex+2ex)+k2)x1y=(\frac{1}{2}e^x+k_1)x+(-\frac{1}{2}(x^2e^x-2xe^x+2e^x)+k_2)x^{-1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS