d 2 y d x 2 + 4 d y d x + 13 y = 0 ; y ( 0 ) = 1 , y ′ ( 0 ) = 4 \frac{d^2 y}{dx^2} + 4 \frac{dy}{dx} + 13y = 0; y(0)=1, y'(0)=4 d x 2 d 2 y + 4 d x d y + 13 y = 0 ; y ( 0 ) = 1 , y ′ ( 0 ) = 4
The given equation can be written as
( D 2 + 4 D + 13 ) y = 0 ; y ( 0 ) = 1 , y ′ ( 0 ) = 4. (D^2 + 4D + 13)y = 0; y(0)=1, y'(0)=4. ( D 2 + 4 D + 13 ) y = 0 ; y ( 0 ) = 1 , y ′ ( 0 ) = 4.
The auxiliary equation is,
m 2 + 4 m + 13 = 0 m^2 + 4m + 13 = 0 m 2 + 4 m + 13 = 0
Solving for m,
m = − 4 ± 16 − 4 ∗ 13 2 = − 4 ± − 36 2 = − 2 ± 3 i . m = \frac{-4 \pm \sqrt{16 - 4*13}}{2}\\
~~~~~=\frac{-4 \pm \sqrt{-36}}{2} \\~~~~~ = -2 \pm 3i.\\ m = 2 − 4 ± 16 − 4 ∗ 13 = 2 − 4 ± − 36 = − 2 ± 3 i .
The solution is,
y ( x ) = e − 2 x ( A cos 3 x + B sin 3 x ) , y(x) = e^{-2x}(A \cos 3x + B \sin 3x), y ( x ) = e − 2 x ( A cos 3 x + B sin 3 x ) ,
where A and B are constants.
To find A and B, we use the given initial conditions
y(0)=1, y'(0)=4.
Now,
y ′ ( x ) = e − 2 x ( − 3 A sin 3 x + 3 B cos 3 x ) − 2 e − 2 x ( A cos 3 x + B sin 3 x ) = e − 2 x ( − 3 A sin 3 x + 3 B cos 3 x ) − 2 y ( x ) . y'(x) = e^{-2x}(-3A \sin 3x + 3B \cos 3x)\\~~~~~~~~~~~~~~~~~ - 2e^-2x(A \cos 3x + B \sin 3x)\\
~~~~~= e^{-2x}(-3A \sin 3x + 3B \cos 3x) - 2y(x). y ′ ( x ) = e − 2 x ( − 3 A sin 3 x + 3 B cos 3 x ) − 2 e − 2 x ( A cos 3 x + B sin 3 x ) = e − 2 x ( − 3 A sin 3 x + 3 B cos 3 x ) − 2 y ( x ) .
Using the condition
y(0) = 1, in y(x) we get A = 1.
Using the condition
y(0) = 1, y'(0) = 4 and A = 1 in y'(x), we get
y'(0) = (0 + 3B) - 2y(0)
4 = 3B - 2
B = 2.
Thus, the solution is
y ( x ) = e − 2 x ( cos 3 x + 2 sin 3 x ) . y(x) = e^{-2x}(\cos 3x + 2 \sin 3x). y ( x ) = e − 2 x ( cos 3 x + 2 sin 3 x ) .
Comments