y′⋅x1−x2=xy12,y(0)=1dyy12=(1−x2)dx∫dyy12=∫(1−x2)dx2y12=x−x33+cy(0)=1 ⟹ y=1,x=0.y'\cdot \frac{x}{1-x^2}=xy^\frac{1}{2}, \quad y(0)=1\\ \frac{dy}{y^\frac{1}{2}}=(1-x^2)dx\\ \int\frac{dy}{y^\frac{1}{2}}=\int(1-x^2)dx\\ 2y^\frac{1}{2}=x-\frac{x^3}{3}+c\\ y(0)=1\implies y=1, x=0.y′⋅1−x2x=xy21,y(0)=1y21dy=(1−x2)dx∫y21dy=∫(1−x2)dx2y21=x−3x3+cy(0)=1⟹y=1,x=0.
Then
2=0−0+c ⟹ c=22=0-0+c\implies c=22=0−0+c⟹c=2
Solution of differential equation is
2y12=x−x33+22y^\frac{1}{2}=x-\frac{x^3}{3}+22y21=x−3x3+2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments