Question #105670
solve the differential equation dy/dx + (x/1-x^2)y = x(y)^1/2 , y(0)=1
1
Expert's answer
2020-03-19T06:18:16-0400

This is the Bernoully equation

y=uv,y=uv+uv,y=uv,y'=u'v+uv', then v(u+x1x2u)+(uvxu12v12)=0v(u'+\frac{x}{1-x^2}u)+(uv'-xu^\frac{1}{2}v^\frac{1}{2})=0

duu=x1x2dx\int \frac{du}{u}=-\int \frac{x}{1-x^2}dx hence u=(1x2)12,u=(1-x^2)^\frac{1}{2}, then

(1x2)12vx(1x2)14v12=0(1-x^2)^\frac{1}{2}v'-x(1-x^2)^\frac{1}{4}v^\frac{1}{2}=0 hence dvv12=x(1x2)14dx\int \frac{dv}{v^\frac{1}{2}}=\int \frac{x}{(1-x^2)^\frac{1}{4}}dx hence

v=((1x2)343+C)2v=(-\frac{(1-x^2)^\frac{3}{4}}{3}+C)^2 then y=(1x2)12vy=(1-x^2)^\frac{1}{2}v

as y(0)=1y(0)=1 hence C=4/3C=4/3 then y(x)=19(1x2)12(4(1x2)34)2y(x)=\frac{1}{9}(1-x^2)^\frac{1}{2}(4-(1-x^2)^\frac{3}{4})^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS