A(x,y)uxx+B(x,y)uxy+C(x,y)uyy=F(x,y,u,ux,uy)A(x,y)u_{xx}+B(x,y)u_{xy}+C(x,y)u_{yy}=F(x,y,u,u_x,u_y)A(x,y)uxx+B(x,y)uxy+C(x,y)uyy=F(x,y,u,ux,uy)
The type of second-order PDE at a point (x0,y0)(x_0,y_0)(x0,y0) depends on the sign of the discriminant defined as
Δ(xo,yo)=∣B2A2CB∣\Delta(x_o,y_o)=\begin{vmatrix} B & 2A \\ 2C & B \end{vmatrix}Δ(xo,yo)=∣∣B2C2AB∣∣
Δ(xo,yo)=∣02(n−1)22(−y2n)0∣=4(n−1)2y2n\Delta(x_o,y_o)=\begin{vmatrix} 0 & 2(n-1)^2 \\ 2(-y^{2n})& 0 \end{vmatrix}=4(n-1)^2y^{2n}Δ(xo,yo)=∣∣02(−y2n)2(n−1)20∣∣=4(n−1)2y2n
For Parabola;
4(n−1)2y2n=04(n-1)^2y^{2n}=04(n−1)2y2n=0
n=1n=1n=1 or y=0y=0y=0
For Hyperbola;
Δ(xo,yo)>0\Delta(x_o,y_o)>0Δ(xo,yo)>0
4(n−1)2y2n>04(n-1)^2y^{2n}>04(n−1)2y2n>0
n≠1,y≠0n\neq1,y\neq0n=1,y=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments