Question #105772
find the value of n for which the equations (n-1)^2 Uxx - y^2n Uyy= ny^2n-1 is parabola and hyperbola
1
Expert's answer
2020-03-17T16:14:31-0400

A(x,y)uxx+B(x,y)uxy+C(x,y)uyy=F(x,y,u,ux,uy)A(x,y)u_{xx}+B(x,y)u_{xy}+C(x,y)u_{yy}=F(x,y,u,u_x,u_y)


The type of second-order PDE at a point (x0,y0)(x_0,y_0) depends on the sign of the discriminant defined as


Δ(xo,yo)=B2A2CB\Delta(x_o,y_o)=\begin{vmatrix} B & 2A \\ 2C & B \end{vmatrix}


Δ(xo,yo)=02(n1)22(y2n)0=4(n1)2y2n\Delta(x_o,y_o)=\begin{vmatrix} 0 & 2(n-1)^2 \\ 2(-y^{2n})& 0 \end{vmatrix}=4(n-1)^2y^{2n}

For Parabola;

4(n1)2y2n=04(n-1)^2y^{2n}=0

n=1n=1 or y=0y=0

For Hyperbola;

Δ(xo,yo)>0\Delta(x_o,y_o)>0

4(n1)2y2n>04(n-1)^2y^{2n}>0

n1,y0n\neq1,y\neq0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS