"A(x,y)u_{xx}+B(x,y)u_{xy}+C(x,y)u_{yy}=F(x,y,u,u_x,u_y)"
The type of second-order PDE at a point "(x_0,y_0)" depends on the sign of the discriminant defined as
"\\Delta(x_o,y_o)=\\begin{vmatrix}\n B & 2A \\\\\n 2C & B\n\\end{vmatrix}"
"\\Delta(x_o,y_o)=\\begin{vmatrix}\n 0 & 2(n-1)^2 \\\\\n 2(-y^{2n})& 0\n\\end{vmatrix}=4(n-1)^2y^{2n}"
For Parabola;
"4(n-1)^2y^{2n}=0"
"n=1" or "y=0"
For Hyperbola;
"\\Delta(x_o,y_o)>0"
"4(n-1)^2y^{2n}>0"
"n\\neq1,y\\neq0"
Comments
Leave a comment