This equation is euler-cauchy equation.
Substitute y=xλ into the homogenous equation
x2(xλ)′′+x(xλ)′−xλ=0
λ(λ−1)xλ+λxλ−xλ=0
λ2−1=0;λ=±1
Hence the solution of the homogenous equation
y=c1x+c2x−1
Using method of variations of parameters c1=c1(x);c2=c2(x) will give us the system
c1′x+c2′x−1=0c1′−c2′x−2=ex⟹c1′=c2′x−2+exxex+c2′x∗x−2+c2′x−1=0
c2′x−1=−xex⟹c2′=−21x2ex
c2=−21ex(x2−2x+2)
c1′=−21x2ex∗x−2+ex=21ex
c1=21ex
Therefore
y=c1x+c2x−1+21xex−21x−1ex(x2−2x+2)
Comments