Question #105857
apply method of variation of parameters to solve D.E.
a)x^2y''+xy'-y=x^2e^x
1
Expert's answer
2020-03-24T13:06:05-0400

This equation is euler-cauchy equation.

Substitute y=xλy=x^{\lambda} into the homogenous equation

x2(xλ)+x(xλ)xλ=0x^2(x^\lambda)''+x(x^\lambda)'-x^\lambda=0

λ(λ1)xλ+λxλxλ=0\lambda(\lambda-1)x^\lambda+\lambda x^\lambda- x^\lambda=0

λ21=0;λ=±1\lambda^2-1=0; \lambda=\pm1

Hence the solution of the homogenous equation

y=c1x+c2x1y=c_1x+c_2x^{-1}

Using method of variations of parameters c1=c1(x);c2=c2(x)c_1=c_1(x);c_2=c_2(x) will give us the system

c1x+c2x1=0c1c2x2=ex    c1=c2x2+exxex+c2xx2+c2x1=0\begin{matrix} c_1'x+c_2'x^{-1}=0 \\ c_1'-c_2'x^{-2}=e^x \end{matrix}\implies \begin{matrix} c_1'=c_2'x^{-2}+e^x \\ xe^x+c_2'x*x^{-2}+c_2'x^{-1}=0 \end{matrix}

c2x1=xex    c2=12x2exc_2'x^{-1}=-xe^x\implies c_2'=-\frac{1}{2}x^2e^x

c2=12ex(x22x+2)c_2=-\frac{1}{2}e^x(x^2-2x+2)

c1=12x2exx2+ex=12exc_1'=-\frac{1}{2}x^2e^x*x^{-2}+e^x=\frac{1}{2}e^x

c1=12exc_1=\frac{1}{2}e^x

Therefore

y=c1x+c2x1+12xex12x1ex(x22x+2)y=c_1x+c_2x^{-1}+\frac{1}{2}xe^x-\frac{1}{2}x^{-1}e^x(x^2-2x+2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS