"y''=1+(y')^2"
"y'=dy\/dx=t"
"y''=dt\/dx=t'"
"dt\/dx=1+t^2"
"\\int dt\/(1+t^2)=\\int dx"
"arctan(t)=x+C_1"
"t=tan(x+C_1)"
"dy\/dx=tan(x+C_1)"
"\\int dy=\\int tan(x+C_1)dx"
substitution for the integral: "z=cos(x+C_1), dz=-sin(x+C_1)dx"
"y=\\int -dz\/z=-log(z)+C_2=-log(cos(x+C_1))+C_2"
answer: "y=-log(cos(x+C_1))+C_2"
Comments
Leave a comment