y′′=1+(y′)2
y′=dy/dx=t
y′′=dt/dx=t′
dt/dx=1+t2
∫dt/(1+t2)=∫dx
arctan(t)=x+C1
t=tan(x+C1)
dy/dx=tan(x+C1)
∫dy=∫tan(x+C1)dx
substitution for the integral: z=cos(x+C1),dz=−sin(x+C1)dx
y=∫−dz/z=−log(z)+C2=−log(cos(x+C1))+C2
answer: y=−log(cos(x+C1))+C2
Comments