Question #105859
solve D.E. y''=1+(y' )^2
1
Expert's answer
2020-03-20T17:22:29-0400

y=1+(y)2dydx=1+(y)2dy1+(y)2=dxx=dy1+(y)2=arctan(y)+c1y=tan(xc1)y=tan(xc1)dx=sin(xc1)cos(xc1)d(xc1)=dcos(xc1)cos(xc1)=lncos(xc1)+c2y'' = 1 + (y')^2\\ \frac{dy'}{dx} = 1 + (y')^2\\ \frac{dy'}{1 + (y')^2} = dx\\ x = \intop\frac{dy'}{1 + (y')^2} = arctan(y') + c_1\\ y' = tan(x - c_1)\\ y = \intop tan(x - c_1)dx = \intop \frac{sin(x - c_1)}{cos(x - c_1)}d(x - c_1) = \intop - \frac{dcos(x - c_1)}{cos(x - c_1)} = - ln|cos(x - c_1)| + c_2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS