"y'' = 1 + (y')^2\\\\\n\\frac{dy'}{dx} = 1 + (y')^2\\\\\n\\frac{dy'}{1 + (y')^2} = dx\\\\\nx = \\intop\\frac{dy'}{1 + (y')^2} = arctan(y') + c_1\\\\\ny' = tan(x - c_1)\\\\\ny = \\intop tan(x - c_1)dx = \\intop \\frac{sin(x - c_1)}{cos(x - c_1)}d(x - c_1) = \\intop - \\frac{dcos(x - c_1)}{cos(x - c_1)} = - ln|cos(x - c_1)| + c_2"
Comments
Leave a comment