y′′=1+(y′)2dy′dx=1+(y′)2dy′1+(y′)2=dxx=∫dy′1+(y′)2=arctan(y′)+c1y′=tan(x−c1)y=∫tan(x−c1)dx=∫sin(x−c1)cos(x−c1)d(x−c1)=∫−dcos(x−c1)cos(x−c1)=−ln∣cos(x−c1)∣+c2y'' = 1 + (y')^2\\ \frac{dy'}{dx} = 1 + (y')^2\\ \frac{dy'}{1 + (y')^2} = dx\\ x = \intop\frac{dy'}{1 + (y')^2} = arctan(y') + c_1\\ y' = tan(x - c_1)\\ y = \intop tan(x - c_1)dx = \intop \frac{sin(x - c_1)}{cos(x - c_1)}d(x - c_1) = \intop - \frac{dcos(x - c_1)}{cos(x - c_1)} = - ln|cos(x - c_1)| + c_2y′′=1+(y′)2dxdy′=1+(y′)21+(y′)2dy′=dxx=∫1+(y′)2dy′=arctan(y′)+c1y′=tan(x−c1)y=∫tan(x−c1)dx=∫cos(x−c1)sin(x−c1)d(x−c1)=∫−cos(x−c1)dcos(x−c1)=−ln∣cos(x−c1)∣+c2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments