Express the following in rectangular and polar form, if
Z1 = 3+ 4i
Z2= 2+3i
1. Z1*Z2
2. Z1-Z2
3. Z1/Z2
4. |Z1|
5. |Z2|
(2)if Z1=50<30°and Z2=30<60°find in rectangular
form the following
1. |Z1|
2. |Z2|
3. |Z1|-|Z2|
4. Z1*Z2
5. |Z2-Z1|
6. |Z2|/|Z1|
(1)
1.
"z_1\\cdot z_2=(3+ 4i)(2+ 3i)=6+9i+8i-12""=-6+17i"
"|z_1\\cdot z_2|=\\sqrt{(-6)^2+17^2}=5\\sqrt{17}"
"\\tan \\theta=\\dfrac{17}{-6}, 90\\degree<\\theta<180\\degree"
"z_1\\cdot z_2=5\\sqrt{17}\\angle\\big(180\\degree-\\tan^{-1}\\dfrac{17}{6}\\big)"
2.
"z_1-z_2=(3+ 4i)-(2+ 3i)=1+i""|z_1- z_2|=\\sqrt{1^2+1^2}=\\sqrt{2}"
"\\tan \\theta=\\dfrac{1}{1}=1, 0\\degree<\\theta<90\\degree"
"z_1-z_2=\\sqrt{2}\\angle45\\degree"
3.
"z_1\/ z_2=(3+ 4i)\/(2+ 3i)=\\dfrac{(3+4i)(2-3i)}{2^2+3^2}""=\\dfrac{6-9i+8i+12}{13}=\\dfrac{18}{13}-\\dfrac{1}{13}i"
"|z_1\/ z_2|=\\sqrt{(\\dfrac{18}{13})^2+(-\\dfrac{1}{13})^2}=\\dfrac{5\\sqrt{13}}{13}"
"\\tan \\theta=\\dfrac{-\\dfrac{1}{13}}{\\dfrac{18}{13}}=-\\dfrac{1}{18}, 270\\degree<\\theta<360\\degree"
"z_1\/ z_2=\\dfrac{5\\sqrt{13}}{13}\\angle\\big(360\\degree-\\tan^{-1}\\dfrac{1}{18}\\big)"
4.
"|z_1|=5+0i"
"|z_1|=5\\angle0\\degree"
5.
"|z_2|=\\sqrt{13}+0i"
"|z_2|=\\sqrt{13}\\angle0\\degree"
(2)
1.
2.
3.
4.
5.
"z_2=30(\\cos 60\\degree+i\\sin 60\\degree)=15+15\\sqrt{3}i"
"|z_2-z_1|=\\sqrt{(15-25\\sqrt{3})^2+(15\\sqrt{3}-25)^2}"
"=\\sqrt{225-750\\sqrt{3}+1875+675-750\\sqrt{3}+625}"
"=10\\sqrt{34-15\\sqrt{3}}"
"|z_2-z_1|=10\\sqrt{34-15\\sqrt{3}}+0i"
6.
"|z_2|\/|z_1|=\\dfrac{3}{5}+0i"
Comments
Leave a comment