Develop 1/(1+z^2) in powers of z-a, a being a real number.Find the general coefficient and for a=1 reduce to simplest form.
Taylor series:
f(z)=∑k=0∞f(k)(a)k!(z−a)kf(z)=\displaystyle{\sum_{k=0}^{\infin}}\frac{f^{(k)}(a)}{k!}(z-a)^kf(z)=k=0∑∞k!f(k)(a)(z−a)k
f′(z)=−2z(1+z2)2f'(z)=-\frac{2z}{(1+z^2)^2}f′(z)=−(1+z2)22z
f′′(z)=6z2−2(1+z2)3f''(z)=\frac{6z^2-2}{(1+z^2)^3}f′′(z)=(1+z2)36z2−2
f′′′(z)=24z(1−z2)(1+z2)4f'''(z)=\frac{24z(1-z^2)}{(1+z^2)^4}f′′′(z)=(1+z2)424z(1−z2)
11+z2=11+a2−2a(1+a2)2(z−a)+6a2−22(1+a2)3(z−a)2+24a(1−a2)6(1+a2)4(z−a)3+...\frac{1}{1+z^2}=\frac{1}{1+a^2}-\frac{2a}{(1+a^2)^2}(z-a)+\frac{6a^2-2}{2(1+a^2)^3}(z-a)^2+\frac{24a(1-a^2)}{6(1+a^2)^4}(z-a)^3+...1+z21=1+a21−(1+a2)22a(z−a)+2(1+a2)36a2−2(z−a)2+6(1+a2)424a(1−a2)(z−a)3+...
for a=1:
11+z2=1−z2+(z−1)24−(z−1)48+(z−1)58−\frac{1}{1+z^2}=1-\frac{z}{2}+\frac{(z-1)^2}{4}-\frac{(z-1)^4}{8}+\frac{(z-1)^5}{8}-1+z21=1−2z+4(z−1)2−8(z−1)4+8(z−1)5−
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments