Develop 1/(1+z^2) in powers of z-a, a being a real number.Find the general coefficient and for a=1 reduce to simplest form.
Taylor series:
"f(z)=\\displaystyle{\\sum_{k=0}^{\\infin}}\\frac{f^{(k)}(a)}{k!}(z-a)^k"
"f'(z)=-\\frac{2z}{(1+z^2)^2}"
"f''(z)=\\frac{6z^2-2}{(1+z^2)^3}"
"f'''(z)=\\frac{24z(1-z^2)}{(1+z^2)^4}"
"\\frac{1}{1+z^2}=\\frac{1}{1+a^2}-\\frac{2a}{(1+a^2)^2}(z-a)+\\frac{6a^2-2}{2(1+a^2)^3}(z-a)^2+\\frac{24a(1-a^2)}{6(1+a^2)^4}(z-a)^3+..."
for a=1:
"\\frac{1}{1+z^2}=1-\\frac{z}{2}+\\frac{(z-1)^2}{4}-\\frac{(z-1)^4}{8}+\\frac{(z-1)^5}{8}-"
Comments
Leave a comment