Question #263476

Develop 1/(1+z^2) in powers of z-a, a being a real number.Find the general coefficient and for a=1 reduce to simplest form.


1
Expert's answer
2021-11-10T14:25:45-0500

Taylor series:


f(z)=k=0f(k)(a)k!(za)kf(z)=\displaystyle{\sum_{k=0}^{\infin}}\frac{f^{(k)}(a)}{k!}(z-a)^k


f(z)=2z(1+z2)2f'(z)=-\frac{2z}{(1+z^2)^2}


f(z)=6z22(1+z2)3f''(z)=\frac{6z^2-2}{(1+z^2)^3}


f(z)=24z(1z2)(1+z2)4f'''(z)=\frac{24z(1-z^2)}{(1+z^2)^4}


11+z2=11+a22a(1+a2)2(za)+6a222(1+a2)3(za)2+24a(1a2)6(1+a2)4(za)3+...\frac{1}{1+z^2}=\frac{1}{1+a^2}-\frac{2a}{(1+a^2)^2}(z-a)+\frac{6a^2-2}{2(1+a^2)^3}(z-a)^2+\frac{24a(1-a^2)}{6(1+a^2)^4}(z-a)^3+...


for a=1:


11+z2=1z2+(z1)24(z1)48+(z1)58\frac{1}{1+z^2}=1-\frac{z}{2}+\frac{(z-1)^2}{4}-\frac{(z-1)^4}{8}+\frac{(z-1)^5}{8}-


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS