Given two complex numbers z1=1+i and z2= √(3)-1
a) Write z1/z2 in algebraic and polar forms.
b) Deduce the exact values of Cos 5pie/12 and Sin 5pie/12
c) What is the lowest positive value of integer n such that (z1/z2) is real
a)
"=\\dfrac{\\sqrt{3}+i+i\\sqrt{3}-1}{4}=\\dfrac{\\sqrt{3}-1}{4}+\\dfrac{\\sqrt{3}+1}{4}i"
"z_1=1+i, |z|=\\sqrt{1^2+1^2}=\\sqrt{2}"
"\\tan\\theta_1=\\dfrac{1}{1}=1"
"z_1=1+i=\\sqrt{2}(\\cos(\\pi\/4)+i\\sin(\\pi\/4))"
"z_2=\\sqrt{3}-i, |z_2|=\\sqrt{(\\sqrt{3})^2+(-1)^2}=2"
"\\tan\\theta_2=\\dfrac{-1}{\\sqrt{3}}, \\theta_2=-\\pi\/6"
"z_2=\\sqrt{3}-i=2(\\cos(-\\pi\/6)+i\\sin(-\\pi\/6))"
"\\dfrac{z_1}{z_2}=\\dfrac{1+i}{\\sqrt{3}-i}=\\dfrac{\\sqrt{2}(\\cos(\\pi\/4)+i\\sin(\\pi\/4))}{2(\\cos(-\\pi\/6)+i\\sin(-\\pi\/6))}"
"=\\dfrac{\\sqrt{2}}{2}(\\cos(\\pi\/4+\\pi\/6)+i\\sin(\\pi\/4+\\pi\/6))"
"=\\dfrac{\\sqrt{2}}{2}(\\cos(5\\pi\/12)+i\\sin(5\\pi\/12))"
b)
"\\cos(5\\pi\/12)=\\dfrac{\\sqrt{6}-\\sqrt{2}}{4}"
"\\sin(5\\pi\/12)=\\dfrac{\\sqrt{6}+\\sqrt{2}}{4}"
c)
If "(\\dfrac{z_1}{z_2})^n" is real, then "\\sin(\\dfrac{5\\pi n}{2})=0."
"\\dfrac{5\\pi n}{12}=\\pi m, m\\in \\Z"
"n=\\dfrac{12m}{5}"
The lowest positive value of integer "n" is "n=12."
Comments
Leave a comment