Answer to Question #262537 in Complex Analysis for luka

Question #262537

 Consider the four points ABC , , and D , on a complex plane with affixes 2 - 3i , 1/2 , 1+ 4i and 4 + 2i respectively.

a) Plot these points on complex plane

b) Calculate the affixes of vectors AB and BC

c) Determine the affix of point E such that ABCE is a parallelogram


1
Expert's answer
2021-11-08T19:43:54-0500

a)




b)


AB=122+(0(3))i\overrightarrow{AB}=\dfrac{1}{2}-2+(0-(-3))i

AB=32+3i\overrightarrow{AB}=-\dfrac{3}{2}+3i


BC=112+(40)i\overrightarrow{BC}=1-\dfrac{1}{2}+(4-0)i

BC=12+4i\overrightarrow{BC}=\dfrac{1}{2}+4i

c)


AB=32+3i=EC\overrightarrow{AB}=-\dfrac{3}{2}+3i=\overrightarrow{EC}

BC=12+4i=AE\overrightarrow{BC}=\dfrac{1}{2}+4i=\overrightarrow{AE}

EC=1xE+(4yE)i=32+3i\overrightarrow{EC}=1-x_E+(4-y_E)i=-\dfrac{3}{2}+3i

xE=52,yE=1x_E=\dfrac{5}{2}, y_E=1

The affix of point E is 52+i.\dfrac{5}{2}+i.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment