Consider the four points ABC , , and D , on a complex plane with affixes 2 - 3i , 1/2 , 1+ 4i and 4 + 2i respectively.
a) Plot these points on complex plane
b) Calculate the affixes of vectors AB and BC
c) Determine the affix of point E such that ABCE is a parallelogram
a)
b)
"\\overrightarrow{AB}=-\\dfrac{3}{2}+3i"
"\\overrightarrow{BC}=\\dfrac{1}{2}+4i"
c)
"\\overrightarrow{BC}=\\dfrac{1}{2}+4i=\\overrightarrow{AE}"
"\\overrightarrow{EC}=1-x_E+(4-y_E)i=-\\dfrac{3}{2}+3i"
"x_E=\\dfrac{5}{2}, y_E=1"
The affix of point E is "\\dfrac{5}{2}+i."
Comments
Leave a comment