∑ − ∞ ∞ 1 z 3 − n 3 = 2 π i ⋅ ∑ r e s f ( z 0 ) \displaystyle{\sum_{-\infin}^{\infin}}\frac{1}{z^3-n^3}=2\pi i\cdot \sum res\ f(z_0) − ∞ ∑ ∞ z 3 − n 3 1 = 2 πi ⋅ ∑ res f ( z 0 ) for z 0 z_0 z 0 in the upper half-plane
1) z 0 = n z_0=n z 0 = n
r e s 1 f ( z 0 ) = lim z → n [ f ( z ) ( z − n ) ] = lim z → n 1 z 2 + z n + n 2 = 1 3 n 2 res_1\ f(z_0)=\displaystyle{\lim_{z\to n}}[f(z)(z-n)]=\displaystyle{\lim_{z\to n}}\frac{1}{z^2+zn+n^2}=\frac{1}{3n^2} re s 1 f ( z 0 ) = z → n lim [ f ( z ) ( z − n )] = z → n lim z 2 + z n + n 2 1 = 3 n 2 1
2) z 0 = n ( − 0.5 + 0.5 i 3 ) z_0=n(-0.5+0.5i\sqrt 3) z 0 = n ( − 0.5 + 0.5 i 3 )
r e s 2 f ( z 0 ) = lim z → z 0 [ f ( z ) ( z − z 0 ) ] = lim z → z 0 1 z 2 + z z 0 + z 0 2 = 1 3 z 0 2 = 1 3 n 2 ( − 0.5 + 0.5 i 3 ) 2 res_2\ f(z_0)=\displaystyle{\lim_{z\to z_0}}[f(z)(z-z_0)]=\displaystyle{\lim_{z\to z_0}}\frac{1}{z^2+zz_0+z_0^2}=\frac{1}{3z_0^2}=\frac{1}{3n^2(-0.5+0.5i\sqrt 3)^2} re s 2 f ( z 0 ) = z → z 0 lim [ f ( z ) ( z − z 0 )] = z → z 0 lim z 2 + z z 0 + z 0 2 1 = 3 z 0 2 1 = 3 n 2 ( − 0.5 + 0.5 i 3 ) 2 1
3) z 0 = n ( − 0.5 − 0.5 i 3 ) z_0=n(-0.5-0.5i\sqrt 3) z 0 = n ( − 0.5 − 0.5 i 3 ) is not in the upper half-plane
∑ − ∞ ∞ 1 z 3 − n 3 = 2 π i 3 n 2 ( 1 + 1 ( − 0.5 + 0.5 i 3 ) 2 ) \displaystyle{\sum_{-\infin}^{\infin}}\frac{1}{z^3-n^3}=\frac{2\pi i}{3n^2}(1+\frac{1}{(-0.5+0.5i\sqrt 3)^2}) − ∞ ∑ ∞ z 3 − n 3 1 = 3 n 2 2 πi ( 1 + ( − 0.5 + 0.5 i 3 ) 2 1 )
Comments