If z = 1+i, find z^2 and 1/z. Also, plot the Argand diagram for both.
If z=1+iz = 1+iz=1+i, let us find z2z^2z2 and 1z:\frac{1}{z}:z1:
z2=(1+i)2=1+2i+i2=1+2i−1=2i,z^2=(1+i)^2=1+2i+i^2=1+2i-1=2i,z2=(1+i)2=1+2i+i2=1+2i−1=2i,
1z=11+i=1−i(1+i)(1−i)=1−i2=12−12i.\frac{1}z=\frac{1}{1+i}=\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}=\frac{1}2-\frac{1}2i.z1=1+i1=(1+i)(1−i)1−i=21−i=21−21i.
Also, let us plot the Argand diagram for both:
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments