3. Use pi/sin(pi.z) to find the partial fraction development of 1 / (cos pi* z) and show that it leads to pi/4=1- 1/3 + 1/5 - 1/7 +... .
"\\frac{1}{sinz}=cotz+tan(z\/2)"
"\\pi tan(\\pi z)=8z\\displaystyle{\\sum^{\\infin}_{n=0}}\\frac{1}{(2n+1)^2-4z^2}"
"\\pi cot(\\pi z)=\\frac{1}{z}+2z\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2-n^2}"
"\\frac{\\pi}{sin(\\pi z)}=\\frac{1}{z}+2z[\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2-n^2}-\\displaystyle{\\sum^{\\infin}_{n=0}}\\frac{1}{z^2-(2n+1)^2}]="
"=\\frac{1}{z}+2z[\\frac{1}{z^2-1^2}+\\frac{1}{z^2-2^2}+\\frac{1}{z^2-3^2}+...-\\frac{2}{z^2-1^2}-\\frac{2}{z^2-1^2}-\\frac{2}{z^2-1^2}-...]="
"=\\frac{1}{z}+\\displaystyle{\\sum^{\\infin}_{n=1}}(-1)^{n-1}\\frac{2z}{n^2-z^2}"
"cos(\\pi z)=sin(\\pi(1\/2- z))"
"\\frac{1}{cos(\\pi z)}=\\pi [\\frac{2}{1-2z}+(\\frac{2}{1+2z}-\\frac{2}{3-2z})-(\\frac{2}{3+2z}-\\frac{2}{5-2z})+...]="
"=\\pi [\\frac{4\\cdot1}{1^2-4z^2}-\\frac{4\\cdot3}{3^2-4z^2}+\\frac{4\\cdot5}{5^2-4z^2}-...]"
"=4\\pi \\displaystyle{\\sum^{\\infin}_{n=0}}(-1)^{n}\\frac{2n+1}{(2n+1)^2-4z^2}"
if z = 0, tnen:
"\\pi\/4=1-1\/3+1\/5-1\/7+..."
Comments
Leave a comment