4. What is the value of
sum - infty ^ infty 1/{ (z+n)^ 2 +a^2}?
∑−∞∞1(z+n)2+a2=2πi⋅∑res f(z0)\displaystyle{\sum_{-\infin}^{\infin}}\frac{1}{(z+n)^2+a^2}=2\pi i\cdot \sum res\ f(z_0)−∞∑∞(z+n)2+a21=2πi⋅∑res f(z0) for z0z_0z0 in the upper half-plane
z0=±ia−nz_0=\pm ia-nz0=±ia−n
res1 f(z0)=limz→z0[f(z)(z−z0)]=12iares_1\ f(z_0)=\displaystyle{\lim_{z\to z_0}}[f(z)(z-z_0)]=\frac{1}{2ia}res1 f(z0)=z→z0lim[f(z)(z−z0)]=2ia1
res2 f(z0)=−12iares_2\ f(z_0)=-\frac{1}{2ia}res2 f(z0)=−2ia1 is not in the upper half-plane if a > 0
then:
∑−∞∞1(z+n)2+a2=2πi/2ia=π/a\displaystyle{\sum_{-\infin}^{\infin}}\frac{1}{(z+n)^2+a^2}=2\pi i/2ia=\pi/a−∞∑∞(z+n)2+a21=2πi/2ia=π/a
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment