Question #261408

This problem features the art of finding complex square roots as well as solving a quadratic equation using a resulting formulation based on completing the quadratic square.



(a) Given that u²=-60+32i , express u in the form a+bi where a,b=R



(b) Hence, solve the equation z²-(3_2i)z+5-5i=0

1
Expert's answer
2021-11-07T17:56:21-0500

(a) Let u=a+bi.u=a+bi. Then


u2=(a+bi)2=a2b2+2abiu^2=(a+bi)^2=a^2-b^2+2abi

Given u2=60+32i.u^2=-60+32i. Substitute


a2b2+2abi=60+32ia^2-b^2+2abi=-60+32i

a2b2=60ab=16\begin{matrix} a^2-b^2=-60 \\ ab=16 \end{matrix}

a2256a2=60b=16a\begin{matrix} a^2-\dfrac{256}{a^2}=-60 \\ b=\dfrac{16}{a} \end{matrix}


a4+60a2256=0a^4+60a^2-256=0

D=(60)24(1)(256)=4624D=(60)^2-4(1)(-256)=4624

a2=60±46242(1)=30±34a^2=\dfrac{-60\pm\sqrt{4624}}{2(1)}=-30\pm34

Since aR,a\in \R, we take a2=30+34=4a^2=-30+34=4


a=2b=8\begin{matrix} a=-2 \\ b=-8\end{matrix}

Or


a=2b=8\begin{matrix} a=2 \\ b=8\end{matrix}


u=28i or u=2+8iu=-2-8i\ or\ u=2+8i

b)

z2(32i)z+55i=0z²-(3-2i)z+5-5i=0

D=(32i)24(1)(55i)=9412i20+20iD=(3-2i)^2-4(1)(5-5i)=9-4-12i-20+20i

=9412i20+20i=15+8i=9-4-12i-20+20i=-15+8i

z=(32i)±D2(1)z=\dfrac{-(3-2i)\pm\sqrt{D}}{2(1)}

Let u=a+bi.u=a+bi. Then


u2=(a+bi)2=a2b2+2abiu^2=(a+bi)^2=a^2-b^2+2abi

Suppose that u2=D=15+8i.u^2=D=-15+8i. Substitute


a2b2+2abi=15+8ia^2-b^2+2abi=-15+8i




a2b2=15ab=4\begin{matrix} a^2-b^2=-15 \\ ab=4 \end{matrix}

a216a2=15b=4a\begin{matrix} a^2-\dfrac{16}{a^2}=-15 \\ b=\dfrac{4}{a} \end{matrix}


a4+15a216=0a^4+15a^2-16=0

D=(15)24(1)(16)=289D=(15)^2-4(1)(-16)=289

a2=15±2892(1)=15±172a^2=\dfrac{-15\pm\sqrt{289}}{2(1)}=\dfrac{-15\pm17}{2}

Since aR,a\in \R, we take a2=15+172=1a^2=\dfrac{-15+17}{2}=1


a=1b=4\begin{matrix} a=-1 \\ b=-4\end{matrix}

Or


a=1b=4\begin{matrix} a=1 \\ b=4\end{matrix}


u=14i or u=1+4iu=-1-4i\ or\ u=1+4i


z=(32i)±(14i)22(1)z=\dfrac{-(3-2i)\pm\sqrt{(-1-4i)^2}}{2(1)}

=3+2i±(14i)2=\dfrac{-3+2i\pm(-1-4i)}{2}

z1=3+2i+1+4i2=1+3iz_1=\dfrac{-3+2i+1+4i}{2}=-1+3i

z2=3+2i14i2=2iz_2=\dfrac{-3+2i-1-4i}{2}=-2-i



z=(32i)±(1+4i)22(1)z=\dfrac{-(3-2i)\pm\sqrt{(1+4i)^2}}{2(1)}

=3+2i±(1+4i)2=\dfrac{-3+2i\pm(1+4i)}{2}

z3=3+2i14i2=2iz_3=\dfrac{-3+2i-1-4i}{2}=-2-i

z2=3+2i+1+4i2=1+3iz_2=\dfrac{-3+2i+1+4i}{2}=-1+3i

z=2i or z=1+3iz=-2-i\ or\ z=-1+3i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS