Question #233410

Evaluate the integral 1/2π\pi i\ointdz /z2(z2+2z+3), where c is the circle |z|=3.


1
Expert's answer
2021-09-06T16:06:50-0400

12πiz=3dzz2(z2+2z+3)=?\frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=?

All the roots of the denominator are: 0,0,1+2,120, 0, -1+\sqrt{2}, -1-\sqrt{2}. They all lie inside the contour C3={z=3}C_3=\{|z|=3\}. Thus, if R>3R>3, then there are no roots between the contours C3C_3 and CR={z=R}C_R=\{|z|=R\}. Therefore, by the Cauchy integral theorem, for all R>3R>3,

12πiz=3dzz2(z2+2z+3)=12πiz=Rdzz2(z2+2z+3)\frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)}

and therefore

12πiz=3dzz2(z2+2z+3)=limR+12πiz=Rdzz2(z2+2z+3)\frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=\lim\limits_{R\to+\infty}\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)}

But

12πiz=Rdzz2(z2+2z+3)12πz=Rdzz2z2+2z+3|\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)}|\leq \frac{1}{2\pi}\oint\limits_{|z|=R} \frac{|dz|}{|z|^2|z^2+2z+3|}\leq

12πz=Rdzz2(z3)2=12π2πRR2(R3)2=1R(R3)20\leq \frac{1}{2\pi}\oint\limits_{|z|=R} \frac{|dz|}{|z|^2(|z|-3)^2}= \frac{1}{2\pi}\frac{2\pi R}{R^2(R-3)^2}=\frac{1}{R(R-3)^2}\to 0

therefore, 12πiz=3dzz2(z2+2z+3)=limR+12πiz=Rdzz2(z2+2z+3)=0\frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=\lim\limits_{R\to+\infty}\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)}=0.

Answer. 12πiz=3dzz2(z2+2z+3)=0\frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS