1 2 π i ∮ ∣ z ∣ = 3 d z z 2 ( z 2 + 2 z + 3 ) = ? \frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=? 2 πi 1 ∣ z ∣ = 3 ∮ z 2 ( z 2 + 2 z + 3 ) d z = ?
All the roots of the denominator are: 0 , 0 , − 1 + 2 , − 1 − 2 0, 0, -1+\sqrt{2}, -1-\sqrt{2} 0 , 0 , − 1 + 2 , − 1 − 2 . They all lie inside the contour C 3 = { ∣ z ∣ = 3 } C_3=\{|z|=3\} C 3 = { ∣ z ∣ = 3 } . Thus, if R > 3 R>3 R > 3 , then there are no roots between the contours C 3 C_3 C 3 and C R = { ∣ z ∣ = R } C_R=\{|z|=R\} C R = { ∣ z ∣ = R } . Therefore, by the Cauchy integral theorem, for all R > 3 R>3 R > 3 ,
1 2 π i ∮ ∣ z ∣ = 3 d z z 2 ( z 2 + 2 z + 3 ) = 1 2 π i ∮ ∣ z ∣ = R d z z 2 ( z 2 + 2 z + 3 ) \frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)} 2 πi 1 ∣ z ∣ = 3 ∮ z 2 ( z 2 + 2 z + 3 ) d z = 2 πi 1 ∣ z ∣ = R ∮ z 2 ( z 2 + 2 z + 3 ) d z
and therefore
1 2 π i ∮ ∣ z ∣ = 3 d z z 2 ( z 2 + 2 z + 3 ) = lim R → + ∞ 1 2 π i ∮ ∣ z ∣ = R d z z 2 ( z 2 + 2 z + 3 ) \frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=\lim\limits_{R\to+\infty}\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)} 2 πi 1 ∣ z ∣ = 3 ∮ z 2 ( z 2 + 2 z + 3 ) d z = R → + ∞ lim 2 πi 1 ∣ z ∣ = R ∮ z 2 ( z 2 + 2 z + 3 ) d z
But
∣ 1 2 π i ∮ ∣ z ∣ = R d z z 2 ( z 2 + 2 z + 3 ) ∣ ≤ 1 2 π ∮ ∣ z ∣ = R ∣ d z ∣ ∣ z ∣ 2 ∣ z 2 + 2 z + 3 ∣ ≤ |\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)}|\leq \frac{1}{2\pi}\oint\limits_{|z|=R} \frac{|dz|}{|z|^2|z^2+2z+3|}\leq ∣ 2 πi 1 ∣ z ∣ = R ∮ z 2 ( z 2 + 2 z + 3 ) d z ∣ ≤ 2 π 1 ∣ z ∣ = R ∮ ∣ z ∣ 2 ∣ z 2 + 2 z + 3∣ ∣ d z ∣ ≤
≤ 1 2 π ∮ ∣ z ∣ = R ∣ d z ∣ ∣ z ∣ 2 ( ∣ z ∣ − 3 ) 2 = 1 2 π 2 π R R 2 ( R − 3 ) 2 = 1 R ( R − 3 ) 2 → 0 \leq \frac{1}{2\pi}\oint\limits_{|z|=R} \frac{|dz|}{|z|^2(|z|-3)^2}= \frac{1}{2\pi}\frac{2\pi R}{R^2(R-3)^2}=\frac{1}{R(R-3)^2}\to 0 ≤ 2 π 1 ∣ z ∣ = R ∮ ∣ z ∣ 2 ( ∣ z ∣ − 3 ) 2 ∣ d z ∣ = 2 π 1 R 2 ( R − 3 ) 2 2 π R = R ( R − 3 ) 2 1 → 0
therefore, 1 2 π i ∮ ∣ z ∣ = 3 d z z 2 ( z 2 + 2 z + 3 ) = lim R → + ∞ 1 2 π i ∮ ∣ z ∣ = R d z z 2 ( z 2 + 2 z + 3 ) = 0 \frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=\lim\limits_{R\to+\infty}\frac{1}{2\pi i}\oint\limits_{|z|=R} \frac{dz}{z^2(z^2+2z+3)}=0 2 πi 1 ∣ z ∣ = 3 ∮ z 2 ( z 2 + 2 z + 3 ) d z = R → + ∞ lim 2 πi 1 ∣ z ∣ = R ∮ z 2 ( z 2 + 2 z + 3 ) d z = 0 .
Answer . 1 2 π i ∮ ∣ z ∣ = 3 d z z 2 ( z 2 + 2 z + 3 ) = 0 \frac{1}{2\pi i}\oint\limits_{|z|=3} \frac{dz}{z^2(z^2+2z+3)}=0 2 πi 1 ∣ z ∣ = 3 ∮ z 2 ( z 2 + 2 z + 3 ) d z = 0 .
Comments