Evaluate the integral 1/2"\\pi" i"\\oint"dz /z2(z2+2z+3), where c is the circle |z|=3.
"\\frac{1}{2\\pi i}\\oint\\limits_{|z|=3} \\frac{dz}{z^2(z^2+2z+3)}=?"
All the roots of the denominator are: "0, 0, -1+\\sqrt{2}, -1-\\sqrt{2}". They all lie inside the contour "C_3=\\{|z|=3\\}". Thus, if "R>3", then there are no roots between the contours "C_3" and "C_R=\\{|z|=R\\}". Therefore, by the Cauchy integral theorem, for all "R>3",
"\\frac{1}{2\\pi i}\\oint\\limits_{|z|=3} \\frac{dz}{z^2(z^2+2z+3)}=\\frac{1}{2\\pi i}\\oint\\limits_{|z|=R} \\frac{dz}{z^2(z^2+2z+3)}"
and therefore
"\\frac{1}{2\\pi i}\\oint\\limits_{|z|=3} \\frac{dz}{z^2(z^2+2z+3)}=\\lim\\limits_{R\\to+\\infty}\\frac{1}{2\\pi i}\\oint\\limits_{|z|=R} \\frac{dz}{z^2(z^2+2z+3)}"
But
"|\\frac{1}{2\\pi i}\\oint\\limits_{|z|=R} \\frac{dz}{z^2(z^2+2z+3)}|\\leq \\frac{1}{2\\pi}\\oint\\limits_{|z|=R} \\frac{|dz|}{|z|^2|z^2+2z+3|}\\leq"
"\\leq \\frac{1}{2\\pi}\\oint\\limits_{|z|=R} \\frac{|dz|}{|z|^2(|z|-3)^2}= \\frac{1}{2\\pi}\\frac{2\\pi R}{R^2(R-3)^2}=\\frac{1}{R(R-3)^2}\\to 0"
therefore, "\\frac{1}{2\\pi i}\\oint\\limits_{|z|=3} \\frac{dz}{z^2(z^2+2z+3)}=\\lim\\limits_{R\\to+\\infty}\\frac{1}{2\\pi i}\\oint\\limits_{|z|=R} \\frac{dz}{z^2(z^2+2z+3)}=0".
Answer. "\\frac{1}{2\\pi i}\\oint\\limits_{|z|=3} \\frac{dz}{z^2(z^2+2z+3)}=0".
Comments
Leave a comment