Find the residue of the function f(z)=1/z(ez-1)
If "f(z)" has a pole of order "k" at "z=z_0" then
"e^z=1+\\dfrac{z}{1!}+\\dfrac{z^2}{2!}+\\dfrac{z^3}{3!}+..."
"e^z-1=\\dfrac{z}{1!}+\\dfrac{z^2}{2!}+\\dfrac{z^3}{3!}+..."
"\\lim\\limits_{z\\to0}(zf(z))=\\lim\\limits_{z\\to0}(z(\\dfrac{1}{z(e^z-1)}))=\\lim\\limits_{z\\to0}(\\dfrac{1}{e^z-1})"
"=does\\ not \\ exist"
"\\dfrac{1}{(2-1)!}\\dfrac{d^{2-1}}{dz^{2-1}}((z-0)^2f(z))"
"=\\dfrac{d}{dz}(z^2(\\dfrac{1}{z(e^z-1)}))"
"=\\dfrac{d}{dz}(\\dfrac{z}{e^z-1})"
"=\\dfrac{e^z-1-ze^z}{(e^z-1)^2}"
"=\\lim\\limits_{z\\to0}\\big(\\dfrac{e^z-e^z-ze^z}{2e^z(e^z-1)}\\big)"
"=\\lim\\limits_{z\\to0}\\big(\\dfrac{-z}{2(e^z-1)}\\big)"
"=\\lim\\limits_{z\\to0}\\big(\\dfrac{-1}{2e^z}\\big)=-\\dfrac{1}{2}"
Comments
Thank you so much for your answer.
Leave a comment