Evaluate the "\\oint"(12z-7)/(z-1)2(2z+3) dz where c is the circle |z+i|= Sqrt3
Singular points of the integrand:
"{z_1} = 1" - second order pole,"\\,\\,{z_2} = - \\frac{3}{2}" - simple pole.
Only a point "{z_1} = 1" falls inside the circle "|z + i| = \\sqrt 3"
Let's find the residue at this point
"\\mathop {res}\\limits_{z = 1} f(z) = \\mathop {\\lim }\\limits_{z \\to 1} {\\left( {\\frac{{12z - 7}}{{{{(z - 1)}^2}\\left( {2z + 3} \\right)}}{{\\left( {z - 1} \\right)}^2}} \\right)^\\prime } = \\mathop {\\lim }\\limits_{z \\to 1} {\\left( {\\frac{{12z - 7}}{{2z + 3}}} \\right)^\\prime } = \\mathop {\\lim }\\limits_{z \\to 1} \\frac{{12(2z + 3) - (12z - 7) \\cdot 2}}{{{{\\left( {2z + 3} \\right)}^2}}} = \\frac{{12 \\cdot 5 - 2\\left( {12 - 7} \\right)}}{{{5^2}}} = 2"
Then
"\\int\\limits_{|z + i| = \\sqrt 3 } {\\frac{{12z - 7}}{{{{(z - 1)}^2}\\left( {2z + 3} \\right)}}dz} = 2\\pi i\\sum {\\mathop {res}\\limits_{z = {z_k}} } f(z) = 2\\pi i \\cdot 2 = 4\\pi i"
Answer:"4\\pi i"
Comments
Leave a comment