Question #233408

Evaluate the \oint(12z-7)/(z-1)2(2z+3) dz where c is the circle |z+i|= Sqrt3

1
Expert's answer
2021-09-06T15:23:04-0400

Singular points of the integrand:

z1=1{z_1} = 1 - second order pole,z2=32\,\,{z_2} = - \frac{3}{2} - simple pole.

Only a point z1=1{z_1} = 1 falls inside the circle z+i=3|z + i| = \sqrt 3



Let's find the residue at this point

resz=1f(z)=limz1(12z7(z1)2(2z+3)(z1)2)=limz1(12z72z+3)=limz112(2z+3)(12z7)2(2z+3)2=1252(127)52=2\mathop {res}\limits_{z = 1} f(z) = \mathop {\lim }\limits_{z \to 1} {\left( {\frac{{12z - 7}}{{{{(z - 1)}^2}\left( {2z + 3} \right)}}{{\left( {z - 1} \right)}^2}} \right)^\prime } = \mathop {\lim }\limits_{z \to 1} {\left( {\frac{{12z - 7}}{{2z + 3}}} \right)^\prime } = \mathop {\lim }\limits_{z \to 1} \frac{{12(2z + 3) - (12z - 7) \cdot 2}}{{{{\left( {2z + 3} \right)}^2}}} = \frac{{12 \cdot 5 - 2\left( {12 - 7} \right)}}{{{5^2}}} = 2

Then

z+i=312z7(z1)2(2z+3)dz=2πiresz=zkf(z)=2πi2=4πi\int\limits_{|z + i| = \sqrt 3 } {\frac{{12z - 7}}{{{{(z - 1)}^2}\left( {2z + 3} \right)}}dz} = 2\pi i\sum {\mathop {res}\limits_{z = {z_k}} } f(z) = 2\pi i \cdot 2 = 4\pi i

Answer:4πi4\pi i



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS