Singular points of the integrand:
z 1 = 1 {z_1} = 1 z 1 = 1 - second order pole, z 2 = − 3 2 \,\,{z_2} = - \frac{3}{2} z 2 = − 2 3 - simple pole.
Only a point z 1 = 1 {z_1} = 1 z 1 = 1 falls inside the circle ∣ z + i ∣ = 3 |z + i| = \sqrt 3 ∣ z + i ∣ = 3
Let's find the residue at this point
r e s z = 1 f ( z ) = lim z → 1 ( 12 z − 7 ( z − 1 ) 2 ( 2 z + 3 ) ( z − 1 ) 2 ) ′ = lim z → 1 ( 12 z − 7 2 z + 3 ) ′ = lim z → 1 12 ( 2 z + 3 ) − ( 12 z − 7 ) ⋅ 2 ( 2 z + 3 ) 2 = 12 ⋅ 5 − 2 ( 12 − 7 ) 5 2 = 2 \mathop {res}\limits_{z = 1} f(z) = \mathop {\lim }\limits_{z \to 1} {\left( {\frac{{12z - 7}}{{{{(z - 1)}^2}\left( {2z + 3} \right)}}{{\left( {z - 1} \right)}^2}} \right)^\prime } = \mathop {\lim }\limits_{z \to 1} {\left( {\frac{{12z - 7}}{{2z + 3}}} \right)^\prime } = \mathop {\lim }\limits_{z \to 1} \frac{{12(2z + 3) - (12z - 7) \cdot 2}}{{{{\left( {2z + 3} \right)}^2}}} = \frac{{12 \cdot 5 - 2\left( {12 - 7} \right)}}{{{5^2}}} = 2 z = 1 res f ( z ) = z → 1 lim ( ( z − 1 ) 2 ( 2 z + 3 ) 12 z − 7 ( z − 1 ) 2 ) ′ = z → 1 lim ( 2 z + 3 12 z − 7 ) ′ = z → 1 lim ( 2 z + 3 ) 2 12 ( 2 z + 3 ) − ( 12 z − 7 ) ⋅ 2 = 5 2 12 ⋅ 5 − 2 ( 12 − 7 ) = 2
Then
∫ ∣ z + i ∣ = 3 12 z − 7 ( z − 1 ) 2 ( 2 z + 3 ) d z = 2 π i ∑ r e s z = z k f ( z ) = 2 π i ⋅ 2 = 4 π i \int\limits_{|z + i| = \sqrt 3 } {\frac{{12z - 7}}{{{{(z - 1)}^2}\left( {2z + 3} \right)}}dz} = 2\pi i\sum {\mathop {res}\limits_{z = {z_k}} } f(z) = 2\pi i \cdot 2 = 4\pi i ∣ z + i ∣ = 3 ∫ ( z − 1 ) 2 ( 2 z + 3 ) 12 z − 7 d z = 2 πi ∑ z = z k res f ( z ) = 2 πi ⋅ 2 = 4 πi
Answer:4 π i 4\pi i 4 πi
Comments