Singular points of the integrand:
z1=1 - second order pole,z2=−23 - simple pole.
Only a point z1=1 falls inside the circle ∣z+i∣=3
Let's find the residue at this point
z=1resf(z)=z→1lim((z−1)2(2z+3)12z−7(z−1)2)′=z→1lim(2z+312z−7)′=z→1lim(2z+3)212(2z+3)−(12z−7)⋅2=5212⋅5−2(12−7)=2
Then
∣z+i∣=3∫(z−1)2(2z+3)12z−7dz=2πi∑z=zkresf(z)=2πi⋅2=4πi
Answer:4πi
Comments