Question #233405

Evaluate the integral \oint ez/z2+1 dz where c is the circle |z|=3.


1
Expert's answer
2021-09-06T14:56:13-0400

z=3ezz2+1dz=z=3ez(z+i)(zi)dz\int\limits_{|z| = 3} {\frac{{{e^z}}}{{{z^2} + 1}}dz = } \int\limits_{|z| = 3} {\frac{{{e^z}}}{{(z + i)(z - i)}}dz}

Singular points of the integrand:

z1=i,z2=i{z_1} = i,\,\,{z_2} = - i - simple poles.

Both points fall inside the circle z=3|z | = 3 :





Let's find the residues at these points:

resz=if(z)=limziez(z+i)(zi)(zi)=limziezz+i=ei2i\mathop {res}\limits_{z = i} f(z) = \mathop {\lim }\limits_{z \to i} \frac{{{e^z}}}{{(z + i)(z - i)}}(z - i) = \mathop {\lim }\limits_{z \to i} \frac{{{e^z}}}{{z + i}} = \frac{{{e^i}}}{{2i}}

resz=if(z)=limziez(z+i)(zi)(z+i)=limziezzi=ei2i\mathop {res}\limits_{z = - i} f(z) = \mathop {\lim }\limits_{z \to i} \frac{{{e^z}}}{{(z + i)(z - i)}}(z + i) = \mathop {\lim }\limits_{z \to i} \frac{{{e^z}}}{{z - i}} = \frac{{{e^{ - i}}}}{{ - 2i}}

Then

z=3ezz2+1dz==2πiresz=zkf(z)=2πi(ei2iei2i)=π(eiei)\int\limits_{|z| = 3} {\frac{{{e^z}}}{{{z^2} + 1}}dz = } = 2\pi i\sum {\mathop {res}\limits_{z = {z_k}} } f(z) = 2\pi i\left( {\frac{{{e^i}}}{{2i}} - \frac{{{e^{ - i}}}}{{2i}}} \right) = \pi \left( {{e^i} - {e^{ - i}}} \right)

Answer:π(eiei)\pi \left( {{e^i} - {e^{ - i}}} \right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS