∣z∣=3∫z2+1ezdz=∣z∣=3∫(z+i)(z−i)ezdz
Singular points of the integrand:
z1=i,z2=−i - simple poles.
Both points fall inside the circle ∣z∣=3 :
Let's find the residues at these points:
z=iresf(z)=z→ilim(z+i)(z−i)ez(z−i)=z→ilimz+iez=2iei
z=−iresf(z)=z→ilim(z+i)(z−i)ez(z+i)=z→ilimz−iez=−2ie−i
Then
∣z∣=3∫z2+1ezdz==2πi∑z=zkresf(z)=2πi(2iei−2ie−i)=π(ei−e−i)
Answer:π(ei−e−i)
Comments