Evaluate the integral "\\oint" ez/z2+1 dz where c is the circle |z|=3.
"\\int\\limits_{|z| = 3} {\\frac{{{e^z}}}{{{z^2} + 1}}dz = } \\int\\limits_{|z| = 3} {\\frac{{{e^z}}}{{(z + i)(z - i)}}dz}"
Singular points of the integrand:
"{z_1} = i,\\,\\,{z_2} = - i" - simple poles.
Both points fall inside the circle "|z | = 3" :
Let's find the residues at these points:
"\\mathop {res}\\limits_{z = i} f(z) = \\mathop {\\lim }\\limits_{z \\to i} \\frac{{{e^z}}}{{(z + i)(z - i)}}(z - i) = \\mathop {\\lim }\\limits_{z \\to i} \\frac{{{e^z}}}{{z + i}} = \\frac{{{e^i}}}{{2i}}"
"\\mathop {res}\\limits_{z = - i} f(z) = \\mathop {\\lim }\\limits_{z \\to i} \\frac{{{e^z}}}{{(z + i)(z - i)}}(z + i) = \\mathop {\\lim }\\limits_{z \\to i} \\frac{{{e^z}}}{{z - i}} = \\frac{{{e^{ - i}}}}{{ - 2i}}"
Then
"\\int\\limits_{|z| = 3} {\\frac{{{e^z}}}{{{z^2} + 1}}dz = } = 2\\pi i\\sum {\\mathop {res}\\limits_{z = {z_k}} } f(z) = 2\\pi i\\left( {\\frac{{{e^i}}}{{2i}} - \\frac{{{e^{ - i}}}}{{2i}}} \\right) = \\pi \\left( {{e^i} - {e^{ - i}}} \\right)"
Answer:"\\pi \\left( {{e^i} - {e^{ - i}}} \\right)"
Comments
Leave a comment