Determine the poles and the residue at each pole of the function f(z)=1/(z-1)2(z+2)
If "f(z)" has a pole of order "k" at "z=z_0" then
"z=-2," simple pole
"rez(f,-2)=\\lim\\limits_{z\\to-2}((z+2)f(z))""=\\lim\\limits_{z\\to-2}((z+2)(\\dfrac{1}{(z+2)(z-1)^2}))"
"=\\lim\\limits_{z\\to-2}(\\dfrac{1}{(z-1)^2})=\\dfrac{1}{(-2-1)^2}=\\dfrac{1}{9}"
"z=1," order "2" pole
"rez(f,1)=\\lim\\limits_{z\\to 1}\\big(\\dfrac{1}{(2-1)!}\\dfrac{d^{2-1}}{dz^{2-1}}((z-1)^2f(z))\\big)""=\\lim\\limits_{z\\to 1}\\big(\\dfrac{d}{dz}((z-1)^2(\\dfrac{1}{(z+2)(z-1)^2}))\\big)"
"=\\lim\\limits_{z\\to 1}\\big(\\dfrac{d}{dz}(\\dfrac{1}{z+2})\\big)"
"=\\lim\\limits_{z\\to 1}\\big(-\\dfrac{1}{(z+2)^2}\\big)"
"=-\\dfrac{1}{(1+2)^2}=-\\dfrac{1}{9}"
"z=-2," simple pole
"z=1," order "2" pole
Comments
Leave a comment