∫ 1 cos ( θ ) + 2 d θ {\displaystyle\int}\dfrac{1}{\cos\left({\theta}\right)+2}\,\mathrm{d}{\theta} ∫ cos ( θ ) + 2 1 d θ
= ∫ sec 2 ( θ 2 ) tan 2 ( θ 2 ) + 3 d θ ={\displaystyle\int}\dfrac{\sec^2\left(\frac{{\theta}}{2}\right)}{\tan^2\left(\frac{{\theta}}{2}\right)+3}\,\mathrm{d}{\theta} = ∫ tan 2 ( 2 θ ) + 3 sec 2 ( 2 θ ) d θ ...simplify using trigonometric
Substitute
u = tan ( θ 2 ) 3 u=\dfrac{\tan\left(\frac{{\theta}}{2}\right)}{\sqrt{3}} u = 3 tan ( 2 θ ) , d u d θ = sec 2 ( θ 2 ) 2 3 \dfrac{\mathrm{d}u}{\mathrm{d}{\theta}} = \dfrac{\sec^2\left(\frac{{\theta}}{2}\right)}{2\sqrt{3}} d θ d u = 2 3 sec 2 ( 2 θ )
d θ = 2 3 sec 2 ( θ 2 ) d u \mathrm{d}{\theta}=\dfrac{2\sqrt{3}}{\sec^2\left(\frac{{\theta}}{2}\right)}\,\mathrm{d}u d θ = sec 2 ( 2 θ ) 2 3 d u
= ∫ 2 3 3 u 2 + 3 d u ={\displaystyle\int}\dfrac{2\sqrt{3}}{3u^2+3}\,\mathrm{d}u = ∫ 3 u 2 + 3 2 3 d u
= 2 3 ∫ 1 u 2 + 1 d u ={{\dfrac{2}{\sqrt{3}}}}{\displaystyle\int}\dfrac{1}{u^2+1}\,\mathrm{d}u = 3 2 ∫ u 2 + 1 1 d u
= 2 arctan ( u ) 3 =\dfrac{2\arctan\left(u\right)}{\sqrt{3}} = 3 2 arctan ( u ) substitution u
= [ 2 arctan ( tan ( θ 2 ) 3 ) 3 ] 0 2 π =[\dfrac{2\arctan\left(\frac{\tan\left(\frac{{\theta}}{2}\right)}{\sqrt{3}}\right)}{\sqrt{3}}]_0^{2\pi} = [ 3 2 arctan ( 3 t a n ( 2 θ ) ) ] 0 2 π
= 2 π 3 =\dfrac{2{\pi}}{\sqrt{3}} = 3 2 π
Comments