By contour techniques"\\smallint" 1/(2+cos"\\theta") limit 0 to 2"\\pi" .
"{\\displaystyle\\int}\\dfrac{1}{\\cos\\left({\\theta}\\right)+2}\\,\\mathrm{d}{\\theta}"
"={\\displaystyle\\int}\\dfrac{\\sec^2\\left(\\frac{{\\theta}}{2}\\right)}{\\tan^2\\left(\\frac{{\\theta}}{2}\\right)+3}\\,\\mathrm{d}{\\theta}" ...simplify using trigonometric
Substitute
"u=\\dfrac{\\tan\\left(\\frac{{\\theta}}{2}\\right)}{\\sqrt{3}}", "\\dfrac{\\mathrm{d}u}{\\mathrm{d}{\\theta}} = \\dfrac{\\sec^2\\left(\\frac{{\\theta}}{2}\\right)}{2\\sqrt{3}}"
"\\mathrm{d}{\\theta}=\\dfrac{2\\sqrt{3}}{\\sec^2\\left(\\frac{{\\theta}}{2}\\right)}\\,\\mathrm{d}u"
"={\\displaystyle\\int}\\dfrac{2\\sqrt{3}}{3u^2+3}\\,\\mathrm{d}u"
"={{\\dfrac{2}{\\sqrt{3}}}}{\\displaystyle\\int}\\dfrac{1}{u^2+1}\\,\\mathrm{d}u"
"=\\dfrac{2\\arctan\\left(u\\right)}{\\sqrt{3}}" substitution u
"=[\\dfrac{2\\arctan\\left(\\frac{\\tan\\left(\\frac{{\\theta}}{2}\\right)}{\\sqrt{3}}\\right)}{\\sqrt{3}}]_0^{2\\pi}"
"=\\dfrac{2{\\pi}}{\\sqrt{3}}"
Comments
Leave a comment