evaluate close integrals :
closed integral at c 1/(z^4+1) dz with contour c:|z|=4
closed integral c 1/(z^4+10z+9) dz with c:|z|=2
closed integral c e^z/(z^4+5z^3) dz with c:|z|=2
1
Expert's answer
2020-11-22T18:15:49-0500
(a)∫∣z∣=4z4+11dzz4+11possesses four simple poles atz=e4jπ,e4j3π,e54π,ej74πof which all four are inside the circle∣z∣=4.The residue atz=e4jπisz→e4jπlim((z−e4jπ)×1+z41)=z→e4jπlim(4z31)by L’Hopital’s rule=4e4−3jπThe residue atz=e4j3πisz→e4j3πlim((z−e4j3π)×1+z41)=z→e4πlim(4z31)by L’Hopital’s rule=4e4−9jπThe residue atz=e4j5πisz→e4j5πlim((z−e4j5π)×1+z41)=z→e4j5πlim(4z31)by L’Hopital’s rule=4e4−15jπThe residue atz=e4j7πisz→e4j7πlim((z−e4j7π)×1+z41)=z→e4j7πlim(4z31)by L’Hopital’s rule=4e4−21jπ∫∣z∣=4z4+11dz=2πj×(4e4−3jπ+4e4−9jπ+4e4−15jπ+4e4−21jπ)=2πe2jπ×(4e4−3jπ+4e4−9jπ+4e4−15jπ+4e4−21jπ)=2π(4e4−jπ+4e4−j7π+4e4−13jπ+4e4−j19π)=2π(e4−jπ+e4−j7π+e4−j13π+e4−j19π)=2π(cos(4π)−jsin(4π)+cos(47π)−jsin(47π)+cos(413π)−jsin(413π)+cos(419π)−jsin(419π))=2π(cos(4π)−jsin(4π)+cos(4π)−jsin(4π)−cos(4π)−jsin(4π)−cos(4π)−jsin(4π))=2π(−4jsin(4π))=−2πj×22=−jπ2(b)∫∣z∣=2z4+10z+91dz=z4+10z+91possesses four simple poles atz=−1,−1.66,1.33−j1.91,1.33+j1.91of which all four are inside the circle∣z∣=2.The residue atz=−1isz→−1lim((z+1)×z4+10z+91)=z→−1lim(z3−z2+z+91)=61The residue atz=−1.66isz→−1.66lim((z+1.66)×z4+10z+91)=z→−1.66lim(4z3+101)=4(−1.66)3+101=−0.12The residue atz=1.33−j1.91isz→1.33−j1.91lim((z−1.33+j1.91)×z4+10z+91)=z→1.33−j1.91lim(4z3+101)=4(1.33−j1.91)3+101=−0.023+j7.60The residue atz=1.33+j1.91isz→1.33+j1.91lim((z−1.33−j1.91)×z4+10z+91)=z→1.33+j1.91lim(4z3+101)=4(1.33+j1.91)3+101=−0.023−j7.60∴∫∣z∣=2z4+10z+91dz=2πj(sum of residues)=2πj×0.0006667=j0.00133π(c)∫∣z∣=2z4+5z3ezdzz4+5z3ezpossesses two simple poles atz=0,−5of which only the first is inside the circle∣z∣=2.The residue atz=0isz→0lim((3−1)!1dz2d2(z−0)3×z4+5z3ez)=21z→0lim(dz2d2z+5ez)=21z→0lim(z+5ez−(z+5)22ez+(z+5)32ez)=21(51−252+1252)=12517∴∫∣z∣=2z4+5z3ezdz=2πj×2(125)17=12517jπ
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments