Answer to Question #118430 in Complex Analysis for Nii Laryea

Question #118430
The transformation T : z "→" w in the complex plane is defined by w = (az + b)/( z + c), where a, b, c ∈ R. Given that w = 3i when z = −3i, and w = 10 − 4i when z = 1 + 4i, find the values of a, b and c. (a) Show that the points for which z is transformed to z lie on a circle and give the centre and radius of this circle. (b) Show that the line through the point z = 4 and perpendicular to the real axis is invariant under T.
1
Expert's answer
2020-06-02T20:03:19-0400

After substitution of w=3i,z=3iw = 3i,\, z=-3i we receive:

3i=3ai+bc3i3ci+9=b3ai3i=\frac{-3ai+b}{c-3i}\Longrightarrow 3c\,i+9=b-3ai .

Since a,b,ca,\,b,\,c are real, we get b=9,a+c=0b=9,\,a+c=0 .

Setting w=104i,z=1+4iw=10-4i,\,z=1+4i we get:

104i=(1+4i)a+91+4ia26+36ia(104i)=a(1+4i)+910-4i=\frac{(1+4i)a+9}{1+4i-a}\Longrightarrow 26+36i-a(10-4i)=a(1+4i)+9

The latter implies that 36i=036\,i=0 .

Thus, there are no coefficients a,b,ca,b,c satisfying the problem.


(a) We set w=zw=z and receive:

z=az+bz+cz2+(ca)zb=0,  zcz=\frac{az+b}{z+c}\Longrightarrow z^2+(c-a)z-b=0,\,\,z\neq-c

Setting z=x+i  yz=x+i\,\,y we get

x2+2xyiy2+(ca)(x+i  y)b=0x^2+2xy\,i-y^2+(c-a)(x+i\,\,y)-b=0 .

The latter leads to

{x2y2+(ca)xb=02xy+(ca)y=0\left\{\begin{array}{l} x^2-y^2+(c-a)x-b=0 \\ 2xy+(c-a)y=0 \end{array}\right.

Solving the latter, we get

  1. If D=(ac)2+4b>0D=(a-c)^2+4b>0 then x=ac±(ac)2+4b2,y=0x=\frac{a-c\pm\sqrt{(a-c)^2+4b}}{2},\quad y=0 ;
  2. If D=(ac)2+4b0D=(a-c)^2+4b\leq 0 then x=12(ac),y=±12(ac)24b.x=\frac12(a-c),\quad y=\pm\frac12\sqrt{-(a-c)^2-4b}.

Now we shall construct a circle for each case.

We set (xx0)2+(yy0)2=R2(x-x_0)^2+(y-y_0)^2=R^2 ,

  1. D=(ac)2+4b>0D=(a-c)^2+4b>0 . Substitution of points yields the following system

{(x1x0)2+y02=R2(x2x0)2+y02=R2\left\{\begin{array}{l} (x_1-x_0)^2+y_0^2=R^2 \\ (x_2-x_0)^2+y_0^2=R^2 \end{array}\right. with x1=ac(ac)2+4b2,  x2=ac+(ac)2+4b2x_1=\frac{a-c-\sqrt{(a-c)^2+4b}}{2},\,\, x_2=\frac{a-c+\sqrt{(a-c)^2+4b}}{2}

We subtract the first equation from the second and then solve the obtained equation with respect to x0x_0 . We receive x0=x1+x22=ac.x_0=\frac{x_1+x_2}{2}=a-c. We can then choose an arbitrary y0y_0 and R=14(x1x2)2+y02R=\sqrt{\frac14(x_1-x_2)^2+y_0^2} .

2. D=(ac)2+4b0D=(a-c)^2+4b\leq 0 . Substitution of points yields the system:

{(x1x0)2+(y1y0)2=R2(x1x0)2+(y1y0)2=R2\left\{\begin{array}{l} (x_1-x_0)^2+(y_1-y_0)^2=R^2 \\ (x_1-x_0)^2+(-y_1-y_0)^2=R^2 \end{array}\right. with y1=12(ac)24b.y_1=\frac12\sqrt{-(a-c)^2-4b}.

After substracting of the first equation from the second we receive that y1y0=0y_1y_0=0 .

If (ac)2+4b=0(a-c)^2+4b=0 we can choose arbitrary x0,y0x_0,y_0 and set R=(x1x0)2+(y1y0)2R=\sqrt{(x_1-x_0)^2+(y_1-y_0)^2} . Otherwise, we get y0=0y_0=0 . We choose an arbitrary x0x_0 and set R=(x1x0)2+y12R=\sqrt{(x_1-x_0)^2+y_1^2} .


(b) All points on the line can be presented as z=4+yiz=4+y\,i , yRy\in\mathbb{R}. After acting with the transformation we receive

w=a(4+yi)+b4+yi+cw=\frac{a(4+y\,i)+b}{4+y\,i+c} .

We substitute y=0,  y=1y=0,\,\,y=1 and receive w=4a+b4+cw=\frac{4a+b}{4+c} , w=(4a+b)(c+4)+1(c+4)2+1+c+4(4a+b)(c+4)2+1iw=\frac{(4a+b)(c+4)+1}{(c+4)^2+1}+\frac{c+4-(4a+b)}{(c+4)^2+1}\,i

In general case (arbitrary a,b,ca,b,c ), these two points are not of the form w=4+y~iw=4+\tilde{y}\,i , y~R{\tilde{y}}\in{\mathbb{R}} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment