2020-05-24T23:45:45-04:00
In an Argand diagram, the point P represents the complex number z, where z = x+iy. Given that z+2 = λi(z+8), where λ is a real parameter, find the Cartesian equation of the locus of P as λ varies. If also z = µ(4 + 3i), where µ is real, prove that there is only one possible position for P.
1
2020-05-25T21:22:47-0400
x + i y + 2 = λ i ( x + i y + 8 ) x+iy+2=\lambda i(x+iy+8) x + i y + 2 = λi ( x + i y + 8 )
x + 2 + λ y + i ( y − λ ( x + 8 ) = 0 ) x+2+\lambda y+i(y-\lambda(x+8)=0) x + 2 + λ y + i ( y − λ ( x + 8 ) = 0 )
x = − 2 − λ y x=-2-\lambda y x = − 2 − λ y y = λ x + 8 λ y=\lambda x+8\lambda y = λ x + 8 λ
x = − 2 − λ 2 x − 8 λ 2 x=-2-\lambda^2x-8\lambda^2 x = − 2 − λ 2 x − 8 λ 2 y = λ x + 8 λ y=\lambda x+8\lambda y = λ x + 8 λ
x = − 2 + 8 λ 2 1 + λ 2 x=-{2+8\lambda^2 \over 1+\lambda^2} x = − 1 + λ 2 2 + 8 λ 2 y = − 2 λ − 8 λ 3 + 8 λ + 8 λ 3 1 + λ 2 y={-2\lambda-8\lambda^3+8\lambda+8\lambda^3 \over 1+\lambda^2} y = 1 + λ 2 − 2 λ − 8 λ 3 + 8 λ + 8 λ 3
x = − 2 + 8 λ 2 1 + λ 2 x=-{2+8\lambda^2 \over 1+\lambda^2} x = − 1 + λ 2 2 + 8 λ 2
y = 6 λ 1 + λ 2 y={6\lambda \over 1+\lambda^2} y = 1 + λ 2 6 λ
z = − 2 + 8 λ 2 1 + λ 2 + i 6 λ 1 + λ 2 z=-{2+8\lambda^2 \over 1+\lambda^2}+i{6\lambda \over 1+\lambda^2} z = − 1 + λ 2 2 + 8 λ 2 + i 1 + λ 2 6 λ
Or
z + 2 = λ i z + 8 λ i z+2=\lambda iz+8\lambda i z + 2 = λi z + 8 λi
z = − 2 + 8 λ i 1 − λ i z={-2+8\lambda i\over 1-\lambda i} z = 1 − λi − 2 + 8 λi
z = ( − 2 + 8 λ i ) ( 1 + λ i ) 1 + λ 2 z={(-2+8\lambda i)(1+\lambda i)\over 1+\lambda^2} z = 1 + λ 2 ( − 2 + 8 λi ) ( 1 + λi )
z = − 2 + 8 λ 2 1 + λ 2 + i 6 λ 1 + λ 2 z=-{2+8\lambda^2 \over 1+\lambda^2}+i{6\lambda \over 1+\lambda^2} z = − 1 + λ 2 2 + 8 λ 2 + i 1 + λ 2 6 λ If z = μ ( 4 + 3 i ) z=\mu(4+3i) z = μ ( 4 + 3 i )
− 2 + 8 λ 2 1 + λ 2 = 4 μ -{2+8\lambda^2 \over 1+\lambda^2}=4\mu − 1 + λ 2 2 + 8 λ 2 = 4 μ 6 λ 1 + λ 2 = 3 μ {6\lambda \over 1+\lambda^2}=3\mu 1 + λ 2 6 λ = 3 μ Then
− 1 2 − 2 λ 2 = 2 λ -{1\over 2}-2\lambda^2=2\lambda − 2 1 − 2 λ 2 = 2 λ
( λ + 1 2 ) 2 = 0 (\lambda+{1\over 2})^2=0 ( λ + 2 1 ) 2 = 0
λ = − 1 2 \lambda=-{1\over 2} λ = − 2 1
μ = − 4 5 \mu=-{4\over 5} μ = − 5 4
z = − 16 5 − i 12 5 z=-{16 \over 5}-i{12\over 5} z = − 5 16 − i 5 12
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments