Answer to Question #118125 in Complex Analysis for Amoah Henry
2020-05-24T23:45:45-04:00
In an Argand diagram, the point P represents the complex number z, where z = x+iy. Given that z+2 = λi(z+8), where λ is a real parameter, find the Cartesian equation of the locus of P as λ varies. If also z = µ(4 + 3i), where µ is real, prove that there is only one possible position for P.
1
2020-05-25T21:22:47-0400
"x+iy+2=\\lambda i(x+iy+8)"
"x+2+\\lambda y+i(y-\\lambda(x+8)=0)"
"x=-2-\\lambda y" "y=\\lambda x+8\\lambda"
"x=-2-\\lambda^2x-8\\lambda^2" "y=\\lambda x+8\\lambda"
"x=-{2+8\\lambda^2 \\over 1+\\lambda^2}" "y={-2\\lambda-8\\lambda^3+8\\lambda+8\\lambda^3 \\over 1+\\lambda^2}"
"x=-{2+8\\lambda^2 \\over 1+\\lambda^2}"
"y={6\\lambda \\over 1+\\lambda^2}"
"z=-{2+8\\lambda^2 \\over 1+\\lambda^2}+i{6\\lambda \\over 1+\\lambda^2}"
Or
"z+2=\\lambda iz+8\\lambda i"
"z={-2+8\\lambda i\\over 1-\\lambda i}"
"z={(-2+8\\lambda i)(1+\\lambda i)\\over 1+\\lambda^2}"
"z=-{2+8\\lambda^2 \\over 1+\\lambda^2}+i{6\\lambda \\over 1+\\lambda^2}" If "z=\\mu(4+3i)"
"-{2+8\\lambda^2 \\over 1+\\lambda^2}=4\\mu" "{6\\lambda \\over 1+\\lambda^2}=3\\mu" Then
"-{1\\over 2}-2\\lambda^2=2\\lambda"
"(\\lambda+{1\\over 2})^2=0"
"\\lambda=-{1\\over 2}"
"\\mu=-{4\\over 5}"
"z=-{16 \\over 5}-i{12\\over 5}"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments
Leave a comment