Question #118125
In an Argand diagram, the point P represents the complex number z, where z = x+iy. Given that z+2 = λi(z+8), where λ is a real parameter, find the Cartesian equation of the locus of P as λ varies. If also z = µ(4 + 3i), where µ is real, prove that there is only one possible position for P.
1
Expert's answer
2020-05-25T21:22:47-0400
x+iy+2=λi(x+iy+8)x+iy+2=\lambda i(x+iy+8)

x+2+λy+i(yλ(x+8)=0)x+2+\lambda y+i(y-\lambda(x+8)=0)

x=2λyx=-2-\lambda yy=λx+8λy=\lambda x+8\lambda

x=2λ2x8λ2x=-2-\lambda^2x-8\lambda^2y=λx+8λy=\lambda x+8\lambda

x=2+8λ21+λ2x=-{2+8\lambda^2 \over 1+\lambda^2}y=2λ8λ3+8λ+8λ31+λ2y={-2\lambda-8\lambda^3+8\lambda+8\lambda^3 \over 1+\lambda^2}

x=2+8λ21+λ2x=-{2+8\lambda^2 \over 1+\lambda^2}

y=6λ1+λ2y={6\lambda \over 1+\lambda^2}

z=2+8λ21+λ2+i6λ1+λ2z=-{2+8\lambda^2 \over 1+\lambda^2}+i{6\lambda \over 1+\lambda^2}

Or


z+2=λiz+8λiz+2=\lambda iz+8\lambda i

z=2+8λi1λiz={-2+8\lambda i\over 1-\lambda i}

z=(2+8λi)(1+λi)1+λ2z={(-2+8\lambda i)(1+\lambda i)\over 1+\lambda^2}

z=2+8λ21+λ2+i6λ1+λ2z=-{2+8\lambda^2 \over 1+\lambda^2}+i{6\lambda \over 1+\lambda^2}

If z=μ(4+3i)z=\mu(4+3i)


2+8λ21+λ2=4μ-{2+8\lambda^2 \over 1+\lambda^2}=4\mu6λ1+λ2=3μ{6\lambda \over 1+\lambda^2}=3\mu

Then


122λ2=2λ-{1\over 2}-2\lambda^2=2\lambda

(λ+12)2=0(\lambda+{1\over 2})^2=0

λ=12\lambda=-{1\over 2}

μ=45\mu=-{4\over 5}

z=165i125z=-{16 \over 5}-i{12\over 5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS