We remind the formula for geometric progression:
"\\frac{1-z^{n+1}}{1-z}=1+z+z^2+\\ldots +z^n,\\quad z\\neq1,\\quad n\\in{\\mathbb{N}}." (1)
If "|z|<1" , we can take the limit "n\\rightarrow\\infty" and obtain
"\\frac{1}{1-z}=1+z+z^2+z^3+\\ldots =\\sum\\limits_{n=0}^{+\\infty}z^n."
If we multiply (1) by "z^{-n}" , we get
"\\frac{z^{-n}-z}{1-z}=z^{-n}+z^{1-n}+z^{2-n}+\\ldots +1=1+z^{-1}+z^{-2}+\\ldots+z^{-n},\\quad n\\in{\\mathbb{N}}."
If "|z|>1" we take the limit "n\\rightarrow\\infty" and get
"\\frac{z}{z-1}=1+z^{-1}+z^{-2}+z^{-3}+\\ldots"
Thus, we obtain two Laurent series
"f(z)=\\frac{1}{z^2(1-z)}=z^{-2}+z^{-1}+1+z+z^2+\\ldots=\\sum\\limits_{n=-2}^{+\\infty}z^n,\\qquad 0<|z|<1,"
"f(z)=\\frac{1}{z^2(1-z)}=-z^{-3}-z^{-4}-z^{-5}-\\ldots=-\\sum\\limits_{n=-\\infty}^{-3}z^n,\\qquad |z|>1."
Comments
Leave a comment