Question #118076
Find two Laurent series in powers of z gor the function f defined by f(z)=1/z^2(1-z) and specify the regions in which the series converges to f(z).
1
Expert's answer
2020-05-26T19:51:40-0400

We remind the formula for geometric progression:

1zn+11z=1+z+z2++zn,z1,nN.\frac{1-z^{n+1}}{1-z}=1+z+z^2+\ldots +z^n,\quad z\neq1,\quad n\in{\mathbb{N}}. (1)

If z<1|z|<1 , we can take the limit nn\rightarrow\infty and obtain

11z=1+z+z2+z3+=n=0+zn.\frac{1}{1-z}=1+z+z^2+z^3+\ldots =\sum\limits_{n=0}^{+\infty}z^n.

If we multiply (1) by znz^{-n} , we get

znz1z=zn+z1n+z2n++1=1+z1+z2++zn,nN.\frac{z^{-n}-z}{1-z}=z^{-n}+z^{1-n}+z^{2-n}+\ldots +1=1+z^{-1}+z^{-2}+\ldots+z^{-n},\quad n\in{\mathbb{N}}.

If z>1|z|>1 we take the limit nn\rightarrow\infty and get

zz1=1+z1+z2+z3+\frac{z}{z-1}=1+z^{-1}+z^{-2}+z^{-3}+\ldots

Thus, we obtain two Laurent series

f(z)=1z2(1z)=z2+z1+1+z+z2+=n=2+zn,0<z<1,f(z)=\frac{1}{z^2(1-z)}=z^{-2}+z^{-1}+1+z+z^2+\ldots=\sum\limits_{n=-2}^{+\infty}z^n,\qquad 0<|z|<1,

f(z)=1z2(1z)=z3z4z5=n=3zn,z>1.f(z)=\frac{1}{z^2(1-z)}=-z^{-3}-z^{-4}-z^{-5}-\ldots=-\sum\limits_{n=-\infty}^{-3}z^n,\qquad |z|>1.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS