We remind the formula for geometric progression:
1−z1−zn+1=1+z+z2+…+zn,z=1,n∈N. (1)
If ∣z∣<1 , we can take the limit n→∞ and obtain
1−z1=1+z+z2+z3+…=n=0∑+∞zn.
If we multiply (1) by z−n , we get
1−zz−n−z=z−n+z1−n+z2−n+…+1=1+z−1+z−2+…+z−n,n∈N.
If ∣z∣>1 we take the limit n→∞ and get
z−1z=1+z−1+z−2+z−3+…
Thus, we obtain two Laurent series
f(z)=z2(1−z)1=z−2+z−1+1+z+z2+…=n=−2∑+∞zn,0<∣z∣<1,
f(z)=z2(1−z)1=−z−3−z−4−z−5−…=−n=−∞∑−3zn,∣z∣>1.
Comments