Question #117676
Express sin 5 threat and cos5theta in the forms of sin theta
1
Expert's answer
2020-05-24T20:18:50-0400

sin5θsin5\theta


=sin(3θ+2θ)= sin(3\theta+2\theta)


=sin3θcos2θ+cos3θsin2θ= sin3\theta cos2\theta+cos3\theta sin2\theta


=(3sinθ4sin3θ)(12sin2θ)+cos(2θ+θ)sin2θ=(3sin\theta-4sin³\theta)(1–2sin²\theta) + cos(2\theta+\theta)sin2\theta


=3sinθ10sin3θ+8sin5θ+[cos2θcosθsin2θsinθ]sin2θ=3sin\theta-10sin³\theta+8sin^5\theta+ [cos2\theta cos\theta- sin2\theta sin\theta]sin2\theta


=3sinθ10sin3θ+8sin5θ+[(12sin2θ)cosθ2sin2θcosθ]2sinθcosθ=3sin\theta-10sin³\theta+8sin^5\theta+ [(1–2sin²\theta)cos\theta- 2sin²\theta cos\theta]2sin\theta cos\theta


=3sinθ10sin3θ+8sin5θ+[cosθ4sin2θcosθ]2sinθcosθ=3sin\theta-10sin³\theta+8sin^5\theta+[cos\theta-4sin²\theta cos\theta]2sin\theta cos\theta


=3sinθ10sin3θ+8sin5θ+2sinθcos2θ8sin3θcos2θ=3sin\theta-10sin³\theta+8sin^5\theta+2sin\theta cos²\theta- 8sin³\theta cos²\theta


=3sinθ10sin3θ+8sin5θ+2sinθ(1sin2θ)8sin3θ(1sin2θ)=3sin\theta-10sin³\theta+8sin^5\theta+2sin\theta(1-sin²\theta)-8sin³\theta(1-sin²\theta)


=3sinθ10sin3θ+8sin5θ+2sinθ2sin3θ8sin3θ+8sin5θ=3sin\theta-10sin³\theta+8sin^5\theta+2sin\theta-2sin³\theta-8sin³\theta+8sin^5\theta


=5sinθ20sin3θ+16sin5θ=5sin\theta-20sin³\theta+16sin^5\theta




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS