sin5θ
=sin(3θ+2θ)
=sin3θcos2θ+cos3θsin2θ
=(3sinθ−4sin3θ)(1–2sin2θ)+cos(2θ+θ)sin2θ
=3sinθ−10sin3θ+8sin5θ+[cos2θcosθ−sin2θsinθ]sin2θ
=3sinθ−10sin3θ+8sin5θ+[(1–2sin2θ)cosθ−2sin2θcosθ]2sinθcosθ
=3sinθ−10sin3θ+8sin5θ+[cosθ−4sin2θcosθ]2sinθcosθ
=3sinθ−10sin3θ+8sin5θ+2sinθcos2θ−8sin3θcos2θ
=3sinθ−10sin3θ+8sin5θ+2sinθ(1−sin2θ)−8sin3θ(1−sin2θ)
=3sinθ−10sin3θ+8sin5θ+2sinθ−2sin3θ−8sin3θ+8sin5θ
=5sinθ−20sin3θ+16sin5θ
Comments