a. ∣ 3 − 4 i ∣ = 9 + 16 = 5 , a r g ( 3 − 4 i ) = arctan ( − 4 / 3 ) ≈ − 5 3 0 |3-4i|=\sqrt{9+16}=5,arg(3-4i)=\arctan (-4/3)\approx-53^0 ∣3 − 4 i ∣ = 9 + 16 = 5 , a r g ( 3 − 4 i ) = arctan ( − 4/3 ) ≈ − 5 3 0
b.∣ − 2 + i ∣ = 4 + 1 = 5 , a r g ( − 2 + i ) = arctan ( − 1 / 2 ) + 18 0 0 ≈ 153. 4 0 |-2+i|=\sqrt{4+1}=\sqrt5,arg(-2+i)=\arctan(-1/2)+180^0\approx153.4^0 ∣ − 2 + i ∣ = 4 + 1 = 5 , a r g ( − 2 + i ) = arctan ( − 1/2 ) + 18 0 0 ≈ 153. 4 0
c.∣ 1 1 + 2 i ∣ = ∣ 1 − i 2 1 + 2 ∣ = ∣ 1 / 3 − i 2 / 3 ∣ = 1 / 9 + 2 / 9 = 3 / 3 |\frac{1}{1+\sqrt2i}|=|\frac{1-i\sqrt2}{1+2}|=|1/3-i\sqrt2/3|=\sqrt{1/9+2/9}=\sqrt3/3 ∣ 1 + 2 i 1 ∣ = ∣ 1 + 2 1 − i 2 ∣ = ∣1/3 − i 2 /3∣ = 1/9 + 2/9 = 3 /3
a r g 1 1 + i 2 = arctan ( − 2 ) ≈ 54. 7 0 arg\frac{1}{1+i\sqrt2}=\arctan(-\sqrt2)\approx54.7^0 a r g 1 + i 2 1 = arctan ( − 2 ) ≈ 54. 7 0
d.∣ 7 − i − 3 − 3 i ∣ = ∣ − ( 7 − i ) ( 1 − i ) 3 ⋅ 2 ∣ = ∣ − 1 + i 4 / 3 ∣ = 1 + 16 / 9 = 5 / 3 |\frac{7-i}{-3-3i}|=|-\frac{(7-i)(1-i)}{3\sdot2}|=|-1+i4/3|=\sqrt{1+16/9}=5/3 ∣ − 3 − 3 i 7 − i ∣ = ∣ − 3 ⋅ 2 ( 7 − i ) ( 1 − i ) ∣ = ∣ − 1 + i 4/3∣ = 1 + 16/9 = 5/3
a r g ( − 1 + i 4 / 3 ) = arctan ( − 4 / 3 ) + 18 0 0 ≈ 12 7 0 arg(-1+i4/3)=\arctan(-4/3)+180^0\approx127^0 a r g ( − 1 + i 4/3 ) = arctan ( − 4/3 ) + 18 0 0 ≈ 12 7 0
Comments