De Moivre's formula is (cos(x)+isin(x))n=(cos(nx)+isin(nx)),n∈Z
By applying it, we obtain:
(a) (cos(5π)+isin(5π))10=cos(2π)+isin(2π)=1
(b) (cos(9π)+isin(9π))−3=cos(−3π)+isin(−3π)=21−i23
(c) (cos(−6π)+isin(−6π))−4=cos(32π)+isin(32π)=−21+i23
Comments