De Moivre's formula is (cos(x)+i sin(x))n=(cos(nx)+i sin(nx)),n∈Z(cos(x)+i\,sin(x))^n=(cos(nx)+i\,sin(nx)),\quad n\in{\mathbb{Z}}(cos(x)+isin(x))n=(cos(nx)+isin(nx)),n∈Z
By applying it, we obtain:
(a) (cos(π5)+i sin(π5))10=cos(2π)+i sin(2π)=1(cos(\frac{\pi}{5})+i\,sin(\frac{\pi}{5}))^{10}=cos(2\pi)+i\,sin(2\pi)=1(cos(5π)+isin(5π))10=cos(2π)+isin(2π)=1
(b) (cos(π9)+i sin(π9))−3=cos(−π3)+i sin(−π3)=12−i 32(cos(\frac{\pi}{9})+i\,sin(\frac{\pi}{9}))^{-3}=cos(-\frac{\pi}{3})+i\,sin(-\frac{\pi}{3})=\frac{1}{2}-i\,\frac{\sqrt{3}}{2}(cos(9π)+isin(9π))−3=cos(−3π)+isin(−3π)=21−i23
(c) (cos(−π6)+i sin(−π6))−4=cos(2π3)+i sin(2π3)=−12+i 32(cos(-\frac{\pi}{6})+i\,sin(-\frac{\pi}{6}))^{-4}=cos(\frac{2\pi}{3})+i\,sin(\frac{2\pi}{3})=-\frac{1}{2}+i\,\frac{\sqrt{3}}{2}(cos(−6π)+isin(−6π))−4=cos(32π)+isin(32π)=−21+i23
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments