−1+i=2(−22+i22)=2(cos3π4+i sin3π4)-1+i=\sqrt{2}(-\frac{\sqrt{2}}2+i\frac{\sqrt{2}}2)=\sqrt{2}(cos\frac{3\pi}4+i \,sin\frac{3\pi}4)−1+i=2(−22+i22)=2(cos43π+isin43π) .
Applying de Moivre's formula we get:
(−1+i)16=28(cos(12π)+i sin(12π))=256(-1+i)^{16}= 2^8(cos(12\pi)+i \,sin(12\pi))=256(−1+i)16=28(cos(12π)+isin(12π))=256 ,
(−1+i)6=23(cos9π2+i sin9π2)=8i(-1+i)^{6}= 2^3(cos\frac{9\pi}2+i \,sin\frac{9\pi}2)=8i(−1+i)6=23(cos29π+isin29π)=8i ,
1(−1+i)6=−18i\frac{1}{(-1+i)^{6}}=-\frac{1}8i(−1+i)61=−81i .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments