Question #117767
Express −1+i in polar form. Hence show that (−1+i)16 is real and that 1/(−1+i)6 is purely imaginary, giving the value for each.
1
Expert's answer
2020-05-25T19:10:53-0400

1+i=2(22+i22)=2(cos3π4+isin3π4)-1+i=\sqrt{2}(-\frac{\sqrt{2}}2+i\frac{\sqrt{2}}2)=\sqrt{2}(cos\frac{3\pi}4+i \,sin\frac{3\pi}4) .

Applying de Moivre's formula we get:

(1+i)16=28(cos(12π)+isin(12π))=256(-1+i)^{16}= 2^8(cos(12\pi)+i \,sin(12\pi))=256 ,

(1+i)6=23(cos9π2+isin9π2)=8i(-1+i)^{6}= 2^3(cos\frac{9\pi}2+i \,sin\frac{9\pi}2)=8i ,

1(1+i)6=18i\frac{1}{(-1+i)^{6}}=-\frac{1}8i .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS