(D β 1)
2
(D
2 + 1)
2y = sin2
(
x
2
) + e
x + x
Determine whether the following series converges or diverges. If the series converges, find its sum.
a. ββπ=1 (1+2n+1)/3n
b. ββπ=1 (3+2n)/(2n+2)
c. ββπ=1 1/(4n2-1)
Find the value of a and b, if
Limxββ [x(1 + acosx) - b sin x]/x3 = 1
(7y=4t^2)dy+4tydt=0
Find fx(x,y), fy(x,y), fx(1,3), and fy(-2,4) for the given function. If
π§ = π(π₯, π¦) = 3π₯^3π¦^2 β π₯^2π¦^3 + 4π₯ + 9
Let A be a singular row reduced echelon square matrix of size n .Find a matr xA(x)=(a_(ij)(x))_(n times n) where a_(ij)(x)' s are polynomials in x such that A(0)= (a_(ij)(0))_(n times n)=A but A(delta)=(a_(ij)(delta))_(n times n) is nonsingular for all delta!=0.
Solve the integral of xΒ²cosxdx, using integration by parts.ο»Ώο»Ώο»ΏFind fx(x,y), fy(x,y), fx(1,3), and fy(-2,4) for the given function. IfΒ
π§ = π(π₯, π¦) = 3π₯ΰ¬·π¦ΰ¬Ά β π₯ΰ¬Άπ¦ΰ¬· + 4π₯ + 9
) If πΌπ = β« πππ ππ₯ cos ππ₯ ππ₯
π
2
then find the reduction formulaΒ
connecting πΌπ and πΌπβ1 and hence prove that πΌπ =
π
2
π+1
Β
Evaluate Cβ« (2x2 + 3y2)dx, where C is the curve given by x(t)=at2 , y(t)=2at, 0β€tβ€1.