) If πΌπ = β« πππ ππ₯ cos ππ₯ ππ₯
π
2
then find the reduction formulaΒ
connecting πΌπ and πΌπβ1 and hence prove that πΌπ =
π
2
π+1
Β
Let
"I_{m}=\\int\\cos ^m(x)dx=\\int\\cos ^{m-1}(x)\\cos(x)dx"Integration by parts
"u=\\cos^{m-1}( x), du=-(m-1)\\cos^{m-2}(x)\\cdot\\sin xdx"
"dv=\\cos(x)dx, v=\\sin(x)"
"I_{m}=\\int\\cos ^m(x)dx=\\int\\cos ^{m-1}(x)\\cos(x)dx"
"=\\cos^{m-1}( x)\\sin (x)+(m-1)\\int\\cos ^{m-2}(x)\\sin^2(x)dx"
"=\\cos^{m-1}( x)\\sin (x)+(m-1)\\int\\cos ^{m-2}(x)dx"
"-(m-1)\\int\\cos ^{m-2}(x)\\cos^2(x)dx"
"=\\cos^{m-1}( x)\\sin (x)+(m-1)I_{m-2}-(m-1)I_{m}, m\\geq 2"
Solve for "I_{m}"
Theerefore
"I_n=\\displaystyle\\int_{0}^{\\pi\/2}\\cos ^n(x)dx""=\\bigg[\\dfrac{\\cos^{n-1}( x)\\sin (x)}{n}\\bigg]\\begin{matrix}\n \\pi\/2 \\\\\n 0\n\\end{matrix}+\\dfrac{n-1}{n}I_{n-2}"
"=\\dfrac{n-1}{n}I_{n-2}=\\dfrac{n-1}{n}\\displaystyle\\int_{0}^{\\pi\/2}\\cos ^{n-2}(x)dx, n\\geq2"
"I_n=\\displaystyle\\int_{0}^{\\pi\/2}\\cos ^n(x)dx=\\dfrac{n-1}{n}\\displaystyle\\int_{0}^{\\pi\/2}\\cos ^{n-2}(x)dx"
"=\\dfrac{n-1}{n}I_{n-2}, n\\geq 2"
"n=0: I_0=\\displaystyle\\int_{0}^{\\pi\/2}\\cos ^0(x)dx=[x]\\begin{matrix}\n \\pi\/2 \\\\\n 0\n\\end{matrix}=\\dfrac{\\pi}{2}"
"n=1: I_0=\\displaystyle\\int_{0}^{\\pi\/2}\\cos ^1(x)dx=[\\sin(x)]\\begin{matrix}\n \\pi\/2 \\\\\n 0\n\\end{matrix}=1"
Comments
Leave a comment