Question #204919

) If 𝐼𝑛 = ∫ π‘π‘œπ‘ π‘›π‘₯ cos 𝑛π‘₯ 𝑑π‘₯

πœ‹

2


then find the reduction formula 

connecting 𝐼𝑛 and πΌπ‘›βˆ’1 and hence prove that 𝐼𝑛 =

πœ‹

2

𝑛+1

 


1
Expert's answer
2021-06-09T17:12:42-0400

Let

Im=∫cos⁑m(x)dx=∫cos⁑mβˆ’1(x)cos⁑(x)dxI_{m}=\int\cos ^m(x)dx=\int\cos ^{m-1}(x)\cos(x)dx

Integration by parts


∫udv=uvβˆ’βˆ«vdu\int udv=uv-\int vdu

u=cos⁑mβˆ’1(x),du=βˆ’(mβˆ’1)cos⁑mβˆ’2(x)β‹…sin⁑xdxu=\cos^{m-1}( x), du=-(m-1)\cos^{m-2}(x)\cdot\sin xdx

dv=cos⁑(x)dx,v=sin⁑(x)dv=\cos(x)dx, v=\sin(x)

Im=∫cos⁑m(x)dx=∫cos⁑mβˆ’1(x)cos⁑(x)dxI_{m}=\int\cos ^m(x)dx=\int\cos ^{m-1}(x)\cos(x)dx

=cos⁑mβˆ’1(x)sin⁑(x)+(mβˆ’1)∫cos⁑mβˆ’2(x)sin⁑2(x)dx=\cos^{m-1}( x)\sin (x)+(m-1)\int\cos ^{m-2}(x)\sin^2(x)dx

=cos⁑mβˆ’1(x)sin⁑(x)+(mβˆ’1)∫cos⁑mβˆ’2(x)dx=\cos^{m-1}( x)\sin (x)+(m-1)\int\cos ^{m-2}(x)dx

βˆ’(mβˆ’1)∫cos⁑mβˆ’2(x)cos⁑2(x)dx-(m-1)\int\cos ^{m-2}(x)\cos^2(x)dx

=cos⁑mβˆ’1(x)sin⁑(x)+(mβˆ’1)Imβˆ’2βˆ’(mβˆ’1)Im,mβ‰₯2=\cos^{m-1}( x)\sin (x)+(m-1)I_{m-2}-(m-1)I_{m}, m\geq 2

Solve for ImI_{m}


Im=cos⁑mβˆ’1(x)sin⁑(x)m+mβˆ’1mImβˆ’2I_{m}=\dfrac{\cos^{m-1}( x)\sin (x)}{m}+\dfrac{m-1}{m}I_{m-2}

Theerefore

In=∫0Ο€/2cos⁑n(x)dxI_n=\displaystyle\int_{0}^{\pi/2}\cos ^n(x)dx

=[cos⁑nβˆ’1(x)sin⁑(x)n]Ο€/20+nβˆ’1nInβˆ’2=\bigg[\dfrac{\cos^{n-1}( x)\sin (x)}{n}\bigg]\begin{matrix} \pi/2 \\ 0 \end{matrix}+\dfrac{n-1}{n}I_{n-2}

=nβˆ’1nInβˆ’2=nβˆ’1n∫0Ο€/2cos⁑nβˆ’2(x)dx,nβ‰₯2=\dfrac{n-1}{n}I_{n-2}=\dfrac{n-1}{n}\displaystyle\int_{0}^{\pi/2}\cos ^{n-2}(x)dx, n\geq2

In=∫0Ο€/2cos⁑n(x)dx=nβˆ’1n∫0Ο€/2cos⁑nβˆ’2(x)dxI_n=\displaystyle\int_{0}^{\pi/2}\cos ^n(x)dx=\dfrac{n-1}{n}\displaystyle\int_{0}^{\pi/2}\cos ^{n-2}(x)dx

=nβˆ’1nInβˆ’2,nβ‰₯2=\dfrac{n-1}{n}I_{n-2}, n\geq 2

n=0:I0=∫0Ο€/2cos⁑0(x)dx=[x]Ο€/20=Ο€2n=0: I_0=\displaystyle\int_{0}^{\pi/2}\cos ^0(x)dx=[x]\begin{matrix} \pi/2 \\ 0 \end{matrix}=\dfrac{\pi}{2}

n=1:I0=∫0Ο€/2cos⁑1(x)dx=[sin⁑(x)]Ο€/20=1n=1: I_0=\displaystyle\int_{0}^{\pi/2}\cos ^1(x)dx=[\sin(x)]\begin{matrix} \pi/2 \\ 0 \end{matrix}=1




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS