Find the equation of the normal to the parabola y 2 +4x = 0 at the point where the line y = x+c touches it.
Point of intersection of line on parabola,
"(x+c)^2+4x=0"
"x^2+c^2+2xc+4x=0"
"x^2+2x(c+2)+c^2=0"
"x=-(c+2)\\pm\\sqrt{2(2+c)}"
"y=-2+\\sqrt{2(2+c)}"
Slope of Tangent to parabola
"2y\\dfrac{dy}{dx}+4=0"
"m_T=\\dfrac{dy}{dx}=\\dfrac{-2}{y}=\\dfrac{-2}{-2+\\sqrt{2(2+c)}}"
Now,
Slope of normal = "m_N"
"m_T\\times m_N=-1"
"m_N=\\dfrac{-2+\\sqrt{2(2+c)}}{2}"
Equation of normal,
"y+2-\\sqrt{2(2+c)}=\\dfrac{-2+\\sqrt{2(2+c)}}{2}(x+(c+2)-\\sqrt{2(2+c)})"
Comments
Leave a comment