Question #205017

Find the value of a and b, if

Limx→∞ [x(1 + acosx) - b sin x]/x3 = 1


1
Expert's answer
2021-06-15T13:38:00-0400

limxx(1+acos(x))bsin(x)x3\lim_{x \to \infty}\frac{x(1 + acos(x)) - b sin (x)}{x^3} (\frac{\infty}{\infty}) form

since above form is an indeterminant form. therefore using L'Hopital rule


    \implies limxddx[x(1+acos(x)bsin(x)]ddxx3\lim_{x \to \infty}\frac{\frac{d}{dx}[x(1 + acos(x) - b sin(x)]}{\frac{d}{dx}x^3}

    \implies limxddx(x+axcos(x))ddxbsin(x)]ddxx3\lim_{x \to \infty}\frac{\frac{d}{dx}(x + axcos(x)) - \frac{d}{dx}b sin(x)]}{\frac{d}{dx}x^3}

    \implies limx(1+acos(x)axsin(x))bcos(x)3x2\lim_{x \to \infty}\frac{(1 + acos(x)-axsin(x)) -b cos(x)}{3x^2} (\frac{\infty}{\infty}) form


again applying L'Hopital rule ,


    \implies limxddx[(1+acos(x)axsin(x))bcos(x)]ddx3x2\lim_{x \to \infty}\frac{\frac{d}{dx}[(1 + acos(x)-axsin(x)) -b cos(x)]}{\frac{d}{dx}3x^2}

    \implies limx[(0asin(x)axcos(x)asin(x))+bsin(x)]6x\lim_{x \to \infty}\frac{[(0 - asin(x)-axcos(x)-asin(x)) + b sin(x)]}{6x}

    \implies limx(asin(x)axcos(x)asin(x)+bsin(x)6x\lim_{x \to \infty}\frac{(asin(x)-axcos(x)-asin(x) + b sin(x)}{6x} (\frac{\infty}{\infty}) form


again applying L'Hopital rule,


    \implies limxddx(asin(x)axcos(x)asin(x)+bsin(x)ddx6x\lim_{x \to \infty}\frac{\frac{d}{dx}(asin(x)-axcos(x)-asin(x) + b sin(x)}{\frac{d}{dx}6x}

    \implies limx(acos(x)+axsin(x)acos(x)acos(x)+bcos(x)6\lim_{x \to \infty}\frac{(acos(x)+axsin(x)-acos(x)-acos(x) + b cos(x)}{6} \to (1)

we get , limxx(1+acos(x))bsin(x)x3\lim_{x \to \infty}\frac{x(1 + acos(x)) - b sin (x)}{x^3} \neq 1 for any a and b because each term of numerator contain either cos(x) or sin(x) which always oscillate between 1 and -1.

if we take a = 0 in (1) then it becoms bcos(x)6\frac{b cos(x) }{6} which can never tends to 1 as x \to \infty


Hence, the given question is not Right .






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 22:54

Dear Raghav Sood, thank you for leaving a feedback. A solution of the question uses another approach.


Raghav Sood
16.06.21, 05:17

We should consider taylor series for sinx and cosx

LATEST TUTORIALS
APPROVED BY CLIENTS