Question #204981

Let A be a singular row reduced echelon square matrix of size n .Find a matr xA(x)=(a_(ij)(x))_(n times n) where a_(ij)(x)' s are polynomials in x such that A(0)= (a_(ij)(0))_(n times n)=A but A(delta)=(a_(ij)(delta))_(n times n) is nonsingular for all delta!=0.


1
Expert's answer
2021-06-12T07:19:00-0400

If the reduced row echelon form of a square matrix is not the identity then it can never be Non - singular

We will consider a real example below

A=[12223102310]A=\begin{bmatrix} 1 & 2 & -2 \\ 2 & -3 & 10\\ 2 & -3 & 10 \end{bmatrix} This matrix can be reduced in echelon square form.


A=[1220760714]A=\begin{bmatrix} 1 & 2 & -2 \\ 0 & -7 & 6\\ 0 & -7 & 14 \end{bmatrix} R2R22R1R_2 \to R_2-2R_1 and R3R32R1R_3 \to R_3-2R_1


A=[122076008]A=\begin{bmatrix} 1 & 2 & -2 \\ 0 & -7 & 6\\ 0 & 0 & 8 \end{bmatrix} R3R3R2R_3 \to R_3-R_2

So here A has three pivot columns 1,-7,8. All the columns are linearly independent

Pan k(A)=3    A0Pan \space k (A)=3 \implies |A|\not =0

Therefore, A is non-singular.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS