Let A be a singular row reduced echelon square matrix of size n .Find a matr xA(x)=(a_(ij)(x))_(n times n) where a_(ij)(x)' s are polynomials in x such that A(0)= (a_(ij)(0))_(n times n)=A but A(delta)=(a_(ij)(delta))_(n times n) is nonsingular for all delta!=0.
If the reduced row echelon form of a square matrix is not the identity then it can never be Non - singular
We will consider a real example below
"A=\\begin{bmatrix}\n 1 & 2 & -2 \\\\\n 2 & -3 & 10\\\\\n 2 & -3 & 10\n\\end{bmatrix}" This matrix can be reduced in echelon square form.
"A=\\begin{bmatrix}\n 1 & 2 & -2 \\\\\n 0 & -7 & 6\\\\\n 0 & -7 & 14\n\\end{bmatrix}" "R_2 \\to R_2-2R_1" and "R_3 \\to R_3-2R_1"
"A=\\begin{bmatrix}\n 1 & 2 & -2 \\\\\n 0 & -7 & 6\\\\\n 0 & 0 & 8\n\\end{bmatrix}" "R_3 \\to R_3-R_2"
So here A has three pivot columns 1,-7,8. All the columns are linearly independent
"Pan \\space k (A)=3 \\implies |A|\\not =0"
Therefore, A is non-singular.
Comments
Leave a comment